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Abstract 
Background: Dropout rates are often very high in distance education. A plethora of research has been conducted to 
identify the contributing factors; however, the majority of the findings are inconclusive and point to the fact that it is 
difficult to isolate a single explanatory factor. While frequently examined factors are personal and environmental, there 
is less research on the relationship between course design and retention or dropout. Method: This paper presents a 
study involving two-stage cluster analysis of 623 variables from 19 university courses at one open and distance 
education (ODE) institution. To this end, the current study grouped the courses into five types based on 22 variables. 
Results: The results indicate that certain sociodemographic variables become a risk factor for course dropout depending 
on their distribution in the standard courses. Conclusions: This result highlights the importance of instructional design 
in the ODE retention and dropout equation and helps explain, in part, why previous studies have not reached a 
consensus on which variables should be considered to explain dropout rates. 
   

Keywords: Online Course; Distance education; Higher education; Perseverance; Cluster analysis. 
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Resumo 
Contexto: Embora as taxas de abandono escolar sejam frequentemente muito elevadas no ensino à distância, tem sido 
realizada muita investigação para identificar os fatores que influenciam o abandono escolar ou a persistência neste modo 
de aprendizagem. As conclusões destes estudos nem sempre convergem e salientam que é difícil isolar um único fator 
explicativo. Embora a maioria dos fatores sejam pessoais e ambientais, há menos investigação sobre a relação entre a 
conceção e a retenção ou desistência do curso. Método: Este estudo apresenta uma metodologia que envolve uma 
análise em duas fases de 623 variáveis de 19 cursos universitários de uma instituição de ensino à distância (EAD). Este 
estudo agrupou os cursos em cinco tipos de cursos com base em 22 variáveis. Resultados: Os resultados indicaram que 
certas variáveis sociodemográficas se tornam um fator de risco de desistência dos cursos, dependendo da sua 
distribuição nos cursos padrão. Conclusão: Esta metodologia sublinha a importância da conceção instrucional na 
equação de retenção e desistência da EAD e ajuda a explicar, em parte, porque é que estudos anteriores não chegaram 
a um consenso sobre quais as variáveis que devem ser utilizadas para explicar a desistência. 
 
Palavras-Chave: Curso online; Educação à distância; Educação superior; Perseverança; Análise de cluster.  

  

 

Introduction 

Dropout rates are often very high in distance education. A raft of research has been conducted over the last 

few decades to identify the contributing factors influencing dropout rates in this type of education. However, 

the results are inconclusive and point out that it is difficult to isolate a single explanatory factor. For example, 

while Bennett (2003) indicates that learners’ financial difficulties are the main reason students drop out of 

school, Willging and Johnson (2009) suggest that this risk factor does not act alone. According to the authors, 

personal, work-related, program-related, and technology-related factors are also at play. In their meta-analysis, 

Lee and Choi (2011) identify 69 different factors for dropping an online course in a distance education setting. 

Such magnitude in the number of variables renders grouping an onerous task (Arifin, 2018). The takeaway of 

these studies is that sociodemographic variables do not converge from one study to another. Therefore, it is 

difficult for scholars to pinpoint the unavoidable variables to include in their research protocol. 

While the literature shows most factors are personal (sociodemographic characteristics, motivation, etc.) and 

environmental (including work-family-study balance and support received or lack thereof), there is a dearth of 

research on the relationship between course design and student retention or dropout. Very few studies on this 

matter focus primarily on assessing instructional structure (Garratt-Reed et al., 2016; Hammond & 

Shoemaker, 2014). Yet, Bernard et al. (2004) indicate that course instructional design would affect persistence. 

Despite this finding, no study to date has been able to establish a typology of online courses. 

Regarding the methodology of studies in education, the lack of research that crosses student 

sociodemographic data with course instructional design may be explained by the methods used in the field of 

education. According to Tan and Shao (2015), education research primarily employs four types of methods: 1) 

data collection through questionnaires and analysis of correlations between variables (No & Hirakawa, 2012; 

Yasmin, 2013); 2) identification of trends in the distribution of demographic variables in relation to dropout 

variables, using data acquired through questionnaires or transcribed information systems (Garrison 1987; 

Rekkedal, 1985); 3) identification of reasons for dropout through analysis of transcripts of interviews 

conducted with relevant parties (Bakker et al., 2019; Li et al., 2010; Ramsdal et al., 2018), or 4) a combination 

of these three methods (Arifin, 2018; Li et al., 2012).  
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This research aimed to explain why previous studies have not reached a consensus on which sociodemographic 

variables should be considered to explain dropout rates in distance learning. To achieve this objective, we 

documented the correlation of students’ sociodemographic variables with their retention in a post-secondary 

online learning context, using course design as a moderator. This study has five sections. First, the literature 

review highlights elements in the pedagogical design that have been linked to student’s dropout. Second, the 

methodology is presented. This section stands out by the inclusion of clusters analysis as part of the 

methodology. Third, results — including the identification of model courses and student’s sociodemographic 

variables are presented. Fourth, a discussion will emphasize the main findings of the study by presenting a 

student’s dropout model using pedagogical design as a moderator. Fifth, a conclusion will be provided. 

Review of the Literature 

Pedagogical design in ODE 

Most literature on distance learning environment have been not very articulate around pedagogical design. 

Despite the growing interest in the design, conception, or pedagogical organization (terms that will be 

considered synonymous here) of ODE courses, there is not much work on the relationship between course 

design and student retention or dropout. The literature on the topic highlights that students value courses with 

a logical content structure which enables them to easily find what they are looking for in the course material 

(Hammond & Shoemaker, 2014). Students also appreciate having clear instructions, guidance, and interactive 

learning materials (Garratt-Reed et al., 2016). Similarly, Burns (2013) indicates that some students appreciate 

the fact that distance courses are highly organized and structured so that there is a guided learning process, 

interventions by the instructor, a pace to follow over the weeks, and synchronous meetings, when necessary. 

In other words, students do not have to decide how to organize their learning experience. Rather, they only 

need to experience what is offered to them. Thus, distance students are aware that the pedagogical strategies 

deployed in their courses create conditions that may encourage them to persevere or not (Jézégou, 2010; 

Nichols, 2010). 

In addition to research on students’ appreciation and perceptions of the pedagogical design of their distance 

education courses, some research findings point to the effects of course design on distance students’ retention 

and dropout. For instance, Pittenger and Doering (2010) postulate that scaffolding processes in course design 

help to make courses engaging, interesting, and motivating to students. In the same vein, the systematic review 

results by Monteiro et al. (2017) highlight some significant findings. As an instance, the authors draw on Kalet’s 

et al. (2013) work that indicates that the importance (weighting) given to exams is correlated with the course 

dropout rate. Moreover, Flynn (2015) demonstrated that repeating weekly activities and having courses with 

an established form and structure promotes persistence, as does incorporating student support materials into 

course materials (Robinia, 2012). However, other elements, such as quizzes about course syllabi or formulating 

contracts with students, do not influence withdrawal (Leeds et al., 2013). 

 

Methodology 

The study was conducted in two phases. In Phase I, the pedagogical structure of 19 courses from a university 

distance learning institute was systematically analyzed. This analysis aimed to identify the possible link between 

the design of the courses and the propensity of students to drop out. In phase II, data was gathered from the 
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students at the same university through a questionnaire, which aimed to examine the relationship between 

students’ sociodemographic variables and course withdrawal.  

Stratified sampling was used in this project to reach the student population as well as their courses. Three 

factors were considered when selecting courses for analysis, namely, the department, the number of students 

per course, and the variability of failure and dropout rates in courses. The courses selected were from at least 

four different departments (language department, social sciences, education science, and administration 

science). According to the data obtained from the registrar for the year 2016, courses have an average of 312 

enrollments per year. Therefore, only courses with at least 300 annual enrollments were selected to be 

included in the study.  Regarding the third consideration, the variability of failure and dropout rates in courses, 

19 courses with failure rates ranging from 4.4% to 26.5% and dropout rates between 4.3% and 26.4% were 

selected in order to account for diversity and ensure sample representativeness.  

A course analysis grid was developed and used to obtain data concerning the pedagogical organization of 19 

courses in a distance education institution in Quebec, Canada. The cluster analysis of the variables selected to 

process was carried out in two steps. First, a matrix of variables with the codifications of the design grid was 

developed in SPSS v21. This matrix had 623 variables, which encompassed all the data collected per courses. 

Afterward, the course data were systematically entered into the statistical software. 

The second step was to measure the relative weight of dropout by course. To this end, the registrar data for 

the cohort of students who took the courses for the fall 2017 semester were examined. The researchers paid 

special attention to ensure that no changes in the instructional design of the courses occurred between fall 

2017 and the course analysis date. Subsequently, each student who had taken one of the designated courses 

was entered into an entry line in the statistical software, and their course progress was specified (dropout = 1, 

persistence = 0) as the last variable. For example, if a course had 100 students enrolled in the fall 2017 semester 

with ten dropouts, 100 entries of the course (and its associated variables) were formed in the statistical 

software, with ten of those entries having “1” as the last variable in order to indicate the dropouts.  

This choice to weigh course enrollment in the statistical analysis served two purposes. First, it took into 

consideration the weight of course enrollments as a value during the analysis. Second, weighting the 

enrollment rate by course analysis provided a clearer picture of the training offered at the institution. For 

example, of 20,671 enrollments in the fall 2017 semester, the status of 11,078 students was analyzed, which 

represented 54.0% of the total enrollment for the period covered. 

The first version of the two-step cluster analysis was based on the entire course data. Then, iteration by 

iteration, the researchers removed variables deemed insignificant through the analysis until the cohesion and 

separation index was equal to or greater than 0.5. Finally, five clusters that were statistically distinct from 22 

variables were identified. This procedure resulted in the formation of course-types or archetypes courses 

which not only functioned as theoretical constructs but statistically allowed to determine whether course 

design could influence student retention and success.  

In parallel with the instructional design analysis, sociodemographic data from the students was obtained via a 

questionnaire. The questionnaire consisted of eight sections and covered a variety of topics, including 

sociodemographic data, use of learning strategies, satisfaction with the guidance received, and the digital tools 

offered in the course. In addition, other variables such as the degree of satisfaction of students’ interactions 

with their peers and their family were included.  
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The sociodemographic and academic data section of the questionnaire consisted of 20 questions. Excluding 

the student number and the school and the email address, each variable in this section came from the scientific 

literature, indicating a relationship between the sociodemographic variables and perseverance in studies 

(Sauvé et al., 2014). Table 1 represents all the sociodemographic variables measured by the survey. The 

construction of the questionnaire was carried out following the three stages proposed in the literature on this 

subject (Cooper & Schindler, 2011; Franklin et al., 2010), namely the pretest, the pilot, and the administration. 

 

Table 1 

Student’s Sociodemographic Variables Measured in the Survey 

Student’s status Father’s education Current session Numbers of hours worked per 
week 

First language Family status 
Total credit earned in the 
current program Presence of disability 

Gender  Distance of the campus Total credits currently 
enrolled in this session 

Judgment of financial situation 

Age Student’s education Type of program Number of credits 

Marital Status 
Attendance of international 
education 

Scholarship financing Mother’s education 

 

The questionnaire was administered online using the Limesurvey platform (limesurvey.org) in accordance with 

the rules and restrictions indicated by the ethics committee. Questionnaires were available between summer 

2018 and summer 2019. Participants who received an invitation from the researchers had to click on a URL 

link to have access to the questionnaire webpage. The questionnaire was available only in French and could be 

completed using a computer, tablet, or smartphone.  

At the end of the semester, the institution’s registrar provided the research team with the final course grades 

and enrollment status information (enrolled or dropped the course). As a prerequisite to accessing the 

questionnaire, participants were required to read an agreement to disclose their information. 

 
Results 

The results of the study will be presented in three parts. The first part presents the cluster analysis 

conducted to identify the five archetypes. The second part reports on further analysis based on the data 

collected with regards to the crossing variables specific to the design of the courses and the 

sociodemographic variables of the students and their dropout from the courses in question. In the end, a 

model will be proposed to help understand the results obtained. 

The Identification of Model Courses  

In what follows, the two-step cluster analysis of the 19 courses is presented, and course-types are 

elaborated upon. Two courses formed Course-type 1; three courses formed Standard Course 2; eleven 

courses formed Standard Course 3; one course formed Standard Course 4, and two courses formed 

Standard Course 5. The variance in the distribution of students across the course-types is acceptable since 
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the difference between the largest cluster does not exceed 3.5 times the size of the smallest (Dolnicar, 

2003; Tan et al., 2013). 

Course-type 1 

Course-type 1 is the one during which (15 sessions/modules1) students are called upon to carry out 

reading comprehension activities in books or texts, as well as activities that aim at the appropriation of 

new knowledge in almost half of the sessions (7 sessions), along with practical exercises (6 sessions). The 

archetype offers almost no discovery activities or visits to external sites. In addition, students are required 

to complete summative assessment activities in more than one-third of the sessions or modules (6 

sessions), although formative assessment activities are offered in few sessions. 

Course-type 2 

In this archetype, students are asked to perform new knowledge appropriation activities (13 sessions) and 

visit external Websites (12 sessions) in almost all 15 modules of the semester. In more than half of the 

sessions, students are required to read texts or books (9). There are few sessions for discovery activities 

(2), writing a visit or research report (1), or doing practical exercises. In addition, students are required to 

complete formative assessment activities such as quizzes or exercises in two-thirds of the sessions (10 

sessions) in which no summative assessment is given. 

Course-type 3 

Course-type 3 encompasses the one in which, in almost all 15 modules, students need to do activities that 

aim to acquire new knowledge (14 sessions) and to do readings in several sessions (12 sessions) and 

practical exercises (11 sessions). In addition, students are required to visit Websites external to the course 

in almost half of the sessions (6 sessions). Very few sessions are dedicated to discovery activities (1 

session), and the writing of a visit or research report is absent. With regards to assessment, students are 

required to complete formative assessment activities in five of the sessions. However, there is no quiz or 

questionnaire to be completed as part of a summative assessment activity. 

Course-type 4 

In this type of course, students are required to do practical exercises (14 sessions), activities for the 

appropriation of new knowledge (12 sessions), and, very rarely, reading activities (4 sessions). Other 

activities such as visits to external Websites, discovery activities, and the writing about a visit or research 

reports are absent. As for the assessment, students are required to complete formative assessment 

activities in 13 of the sessions, but they are not given a quiz or questionnaire to complete as part of a 

summative assessment activity. 

Course-type 5 

The last type of course is the one in which students are asked in almost all 15 modules to perform activities 

for the appropriation of new knowledge (13 sessions) and discovery activities (13 sessions). Several 

sessions are dedicated to reading passages from books or other texts (12 sessions), while only one session 

 
 
1 The terms sessions and modules used in this section have no distinction in meaning. 



Desjardin, N. et al.         Two-stage cluster analysis in distance learning 
 

 
 

R P I C S  83 DOI: 10.31211/rpics.2020.7.2.230 

 

 

is assigned to practical exercises. In this sample course, students are required to complete formative 

assessment activities in eleven of the sessions or modules, but they do not need to complete a quiz or 

questionnaire as part of a summative assessment activity. 

Factor Analysis of Sociodemographic Variables with Course Dropout 

The first statistical analysis cross-referenced the sociodemographic variables from the questionnaire 

with the data on course dropout for the students in our sample to see if certain sociodemographic 

factors were related to dropout in each course studied. To do this, a factor analysis was conducted. 

Although factor analysis is not recommended for categorical variables, some authors (Baglin, 2014; Flora 

& Curran, 2004) maintain that to the extent that variables can be classified ordinally, factor analysis is 

considered appropriate in that it can provide insights in an exploratory study. In fact, factor analysis, 

without indicating the direction of an association, can allow us to keep the sociodemographic variables 

that have an influence on the students’ propensity for dropping out of a given course. Moreover, factor 

analysis offers a holistic view of the variables and their co-dependency. In other words, this procedure 

allows us to confirm that a variable is not found in the analysis model only because of its strong 

correlation with a second sociodemographic variable. Using the Eigenvalue (Marcus & Minc, 1988) 

provided by factor analysis, it is possible to estimate the variance in course dropout. Table 2 shows the 

results of the factor analysis. 

 
Table 2 

Factor Analysis of the Sociodemographic Variables using Maximum Likelihood Extraction Method 

 
Eigenvalue Extraction of squared sums SSR 

Factors Total POV PC Total POV PC Total 

1 2.12 15.15 15.15 1.39 9.92 9.92 1.45 

2 1.97 14.04 29.19 1.49 10.62 20.54 1.53 

3 1.43 10.24 39.43 1.19 8.52 29.06 1.14 

4 1.23 8.76 48.19 0.95 6.75 35.81 0.95 

5 1.19 8.51 56.70 0.92 6.57 42.38 1.23 

6 1.13 8.05 64.75 0.49 3.53 45.91 0.56 

Note. Extraction method: Maximum Likelihood (only the cases where yes or no = 1 were used in the analysis phase). POV = percentage of 
variance; PC = percentage cumulative; SSR = Sum of squared rotations.  

 
 

Thus, as shown in Table 3, from among the 20 variables in the questionnaire, ten variables were divided into 

six factors that were considered significant for our sample. 
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Table 3 

Distribution of the Sociodemographic Variables According to the Factor Analysis 

Factors Variable(s) 

Factor 1 (9.9% of total variance) 
Student status  

The presence of a previous degree from abroad 

Factor 2 (10.6% of total variance) 
Family and marital status 

Judgment of financial situation 

Factor 3 (8.5% of total variance) 
Student’s first language 

Type of program 

Factor 4 (6.8% of total variance) Gender 

Factor 5 (6.6% of total variance) Parents’ education (mother and father) 

Factor 6 (3.5% of total variance) 
Presence of disability (according to the registrar’s data) 

Number of paid hours worked per week 

 
 

Discussion and the Proposal of a Model  

Following the statistical analyses presented in this chapter, the following model can be proposed to 

explain dropout rates in distance education courses based on the characteristics of their pedagogical 

design.  

This model, illustrated in Figure 1, leads to three conclusions. First, it is possible to group courses 

according to certain variables with the two-step cluster analysis. Of the 623 variables identified in the 

course analysis grid, 22 variables can be grouped to form clusters or course-types that are homogeneous 

within groups and relatively different from one another. Our sample of 19 courses yielded five 

consistent course types. When the sociodemographic variables were controlled to test the propensity 

for students to drop the course-by-course type, no significant differences were found. In other words, 

the clustering of the course’s instructional design alone could not explain whether or not a student 

dropped a course. 

Second, of the 20 sociodemographic variables identified in the questionnaire, ten variables were 

deemed significant in explaining the high rate of students’ dropout (up to 45.9%). These ten variables 

were further grouped into six factors.   

Third, the triangulation of the standard courses with the relationship between student 

sociodemographic variables and course withdrawal demonstrates that certain archetypes play a 

protective role (moderating role) for students’ dropout. For instance, sociodemographic variables that 

are statistically significant in their relationship with course withdrawal when crossed alone with course 

withdrawal become non-significant when they are in standard Courses 1 and 5. In contrast, for Course-

types 2, 3, and 4, the degree of the interdependence between certain sociodemographic variables and 

dropout increases. As an example, the correlation of marital status and family situation for Archetype 2 

and 4 and financial status judgment for standard Course 3 for explaining students’ dropout is 

augmented. 



Desjardin, N. et al.         Two-stage cluster analysis in distance learning 
 

 
 

R P I C S  85 DOI: 10.31211/rpics.2020.7.2.230 

 

 

 

 

Figure 1  

 Distance Online Learning Student’s Dropout Model Using Pedagogical Design as a Moderator 

 

 

Moreover, these results also indicate that specific course design choices may increase the risk of dropouts 

among certain students. For example, civil and marital status play a prominent role in explaining the 

student’s dropout, especially in Course-types 2 and 4. Specifically, students living with their spouses with 

or without children are correlated to a higher dropout rate. A fine analysis of those course-types reveals 

that both use more often quizzes and formative activities in the session when compared to Course-types 

1 and 3. Thus, it would be possible to make a hypothesis that students that have a compressed schedule 

– when compared to, let’s say, a student that is single and living with both parents — may contemplate the 

work needed to complete to course as too high and, therefore, drop out of the course. 

Based on the results of this research, the model presented in Figure 1 helps explain some of the 

inconsistencies in the literature regarding the influence of students’ sociodemographic variables on their 

propensity to drop courses. While several studies demonstrate a relationship between certain student-

specific variables and course withdrawal (Jun, 2005; Packham et al., 2004), other studies do not reach the 

same conclusion (Kember et al., 1992, 1994). The proposed model can potentially explain the non-

convergent conclusions of the previous studies. For instance, it can be argued that studies in which no 

statistically significant relationship between student sociodemographics and course dropout was found 

were predominantly from a type of course that offered protection against this risk. 

 

 
 

 

Student status 

Attendance of international education 

First language 

Type of program 

Judgement of the financial situation 

Gender 

Marital status 

Family status 

Parent’s education (mother & father) 

Presence of student’s disability 

Sociodemographic variables 

 
Propensity to 
drop the 
course 

Dropout 
 
 
 
Model 1 
 
 
Model 2 
 
 
Model 3 
 
 
Model 4 
 
 
Model 5 

Model 
courses 

Marital status (c = .34; p = .01) 
Family status (c = .41; p = .005) 

Judgment of the Financial 
situations (c = .18; p = .011) 
 

Marital status (c = .30; p = .038) 
Family status (c = .39; p = .008) 

X 

0.56 
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Conclusion 

The purpose of this article was to demonstrate that the instructional design of distance education courses plays 

a moderating role in the relationship between students’ sociodemographic variables and course dropout rate. 

While there is ample research evidence regarding this relationship between the two, authors have not yet 

reached a consensus as to the specific sociodemographic variables that play a determining role in the 

relationship. The contribution of this research is that the instructional design of online courses can be grouped 

into five typologies. These course-types, when other variables are controlled, do not have a significant direct 

relationship with dropout propensity. However, the model proposed in this study indicates that certain student 

characteristics (e.g., family status or judgment of financial status) may become a risk factor in some instructional 

designs. It is important to note that the current study does not claim to have detected all of the pedagogical 

groupings of distance education courses, and in order to reach a more generalizable conclusion, a larger sample 

is needed. Nevertheless, this study offers an interesting avenue for explaining the inconsistency of 

sociodemographic factors in dropout studies. 
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