Departamento de Investigação & Desenvolvimento • Instituto Superior Miguel Torga

ARTIGO ORIGINAL

Velocidade como indicador de esforço de resposta no comportamento humano: Um breve relato

Speed as an indicator of response effort in human behavior: A brief report

André Connor de Méo Luiz ¹ Myenne Mieko Ayres Tsutsumi ^{1,2} José Martins da Silva Neto ¹ Julia Rocker dos Santos ¹ Kauane de Kássia Mussett Lazaniri ¹ Luis Humbert Andrade de Lemos ^{1,3} Rafael Tresso Terrin ^{1,2}

- ¹ Instituto Continuum, Brasil
- ² Pontificia Universidade Católica do Paraná, Brasil
- ³ Instituto Baiano de Terapia Comportamental, Brasil
- * Artigo escrito em português do Brasil.

Recebido: 20/03/2025; Revisto: 16/10/2025; Aceite: 24/11/2025.

https://doi.org/10.31211/rpics.2025.11.2.396

Resumo

Contexto: O esforço de resposta é uma dimensão central na análise do comportamento e pode modular respostas em contextos de segurança, saúde e sustentabilidade. Embora o esforço de resposta tenha sido amplamente estudado por meio de manipulações de exigências de razão e de força, pouco se sabe sobre os efeitos da velocidade da resposta. Objetivo: Examinar os efeitos de diferentes requisitos de velocidade, enquanto manipulações de esforço de resposta, sobre a taxa de respostas em humanos. Métodos: Seis estudantes de graduação participaram de um delineamento A-B-A, em uma tarefa computadorizada de destruição de "fontes de poluição", sob esquema múltiplo de intervalo variável (VI 15 s / VI 30 s). O requisito de velocidade (20%, 40%, 80% ou 100% do comprimento da tela/segundo) variou entre sessões e retornou ao valor inicial na fase final. Resultados: De forma geral, aumentos no requisito de velocidade acompanharam-se por reduções nas taxas de resposta, sem efeitos consistentes da taxa de reforço entre os componentes. Padrões assimétricos entre grupos com aumento versus redução de velocidade e diferenças individuais sugeriram variação na sensibilidade ao esforço. Conclusões: Os achados sugerem que a velocidade funciona como uma dimensão de esforço de resposta com efeitos predominantemente supressivos sobre o responder, oferecendo um parâmetro adicional, potencialmente útil em intervenções comportamentais não punitivas em contextos clínicos, educacionais e organizacionais.

Palavras-Chave: Esforço de Resposta; Esforço Físico; Desempenho Psicomotor; Comportamento Humano; Intervenções Comportamentais.

DI&D | ISMT

rpics@ismt.pt https://rpics.ismt.pt

Publicação em Acesso Aberto

©2025. Autora(s)/Autor(es). Este é um artigo de acesso aberto distribuído sob a Licença *Creative Commons Attribution*, que permite uso, distribuição e reprodução sem restrições em qualquer meio, desde que o trabalho original seja devidamente citado.

André Connor de Méo Luiz (Autor de correspondência)

Instituto Continuum, Rua Prof. João Cândido, Nº. 1395 86010-001, Londrina – PR, Brasil

Tel.: +55 43 3354-4682

E-mail: profandreluizpsi@gmail.com

Abstract

Background: Response effort is a central dimension in behavior analysis and can modulate responding in contexts related to safety, health, and sustainability. Although response effort has been extensively studied through manipulations of ratio and force requirements, little is known about the effects of response speed. **Objective**: To examine the effects of different speed requirements, as manipulations of response effort, on human response rates. **Method**: Six undergraduate students participated in an A–B–A single-case design using a computer-based task involving the destruction of "pollution sources," under a multiple variable-interval schedule (VI 15 s / VI 30 s). The speed requirement (20%, 40%, 80%, or 100% of screen length per second) varied across sessions and returned to the initial value in the final phase. **Results**: In general, increases in the speed requirement were accompanied by reductions in response rates, with no consistent effects of reinforcement rate between components. Asymmetrical patterns between groups exposed to increasing versus decreasing speed, as well as individual differences, suggested variability in sensitivity to effort. **Conclusions**: The findings suggest that speed functions as a dimension of response effort with predominantly suppressive effects on responding, offering an additional parameter that may be useful in nonpunitive behavioral interventions in clinical, educational, and organizational contexts.

Keywords: Response Effort; Physical Response effort; Physical effort; Psychomotor performance; Human behavior; Behavioral interventions.

Introdução

Todo comportamento emitido envolve algum nível de esforço de resposta (Alling & Poling, 1995; Friman & Poling, 1995). Na vida cotidiana, as pessoas frequentemente precisam responder mais rápido ou mais devagar, percorrer distâncias maiores ou menores, alocar mais ou menos respostas a uma tarefa ou mover objetos com diferentes pesos. Dessa forma, o esforço de resposta desempenha um papel central na organização do comportamento ao longo da vida.

Compreender como essas dimensões de esforço de resposta afetam o comportamento humano tem relevância social, pois pode subsidiar intervenções comportamentais (Gwinn et al., 2005; Irvin et al., 1998; Van Camp et al., 2001) e decisões de políticas públicas relacionadas à segurança, saúde e sustentabilidade (Brothers et al., 1994; Friman et al., 1985, 1987). Por exemplo, manipular o esforço tem sido útil para reduzir comportamentos autolesivos ou repetitivos em contextos clínicos e educacionais, ao tornar essas respostas mais custosas em termos físicos ou motores (Irvin et al., 1998; Van Camp et al., 2001). De modo análogo, manipulações de esforço, como alterar a distância relativa entre recipientes de lixo comum e de reciclagem, mostraram-se eficazes para promover comportamentos sustentáveis, aumentando o descarte adequado de resíduos (Brothers et al., 1994).

Além do contexto aplicado, compreender como pequenas variações de esforço alteram padrões de resposta pode auxiliar na formulação de políticas de saúde pública que busquem equilibrar custos comportamentais, por exemplo, em medidas de adesão ao uso de máscaras ou higienização das mãos (Friman et al., 1985, 1987). Assim, estudar o esforço de resposta oferece não apenas relevância teórica, mas também potencial prático para o manejo de comportamentos de interesse social.

Devido a esses e outros aspectos, variações nos níveis de esforço de resposta têm sido examinadas em estudos básicos e aplicados (Friman & Poling, 1995; Wilder et al., 2021). As formas mais comuns de

investigação do esforço de resposta incluem manipulações do número de respostas necessárias para produzir reforçadores ou a força exigida para responder.

Por exemplo, Powell (1968) examinou o desempenho de pombos em esquemas de razão fixa (FR) com aumentos sequenciais no tamanho da razão, fornecendo evidências de uma relação geralmente negativa entre o valor da razão e a taxa de resposta. Os pombos foram expostos inicialmente a um esquema de reforço FR 10, gradualmente aumentado até FR 160 e, em seguida, reduzido novamente ao FR 10 inicial. Os valores de FR utilizados foram 15, 20, 30, 40, 50, 60, 75, 90, 105, 120, 140 e 160, seguidos de 120, 90, 60, 40, 20 e 10. Embora a função entre esforço de resposta (tamanho da razão) e taxa de resposta não tenha sido estritamente linear, os resultados indicaram que, em termos gerais, quanto maior a razão exigida, menor a taxa de resposta. É importante notar que, à medida que a exigência de razão aumenta, a taxa de reforço tende a diminuir, o que pode contribuir parcialmente para a redução observada na taxa de resposta. Ainda assim, mesmo considerando essa covariação entre esforço e densidade de reforço, Powell (1968) interpretou os dados como evidência de um efeito específico do esforço requerido por resposta sobre o responder.

Essa distinção é relevante porque manipulações de razão fixa alteram simultaneamente o custo da resposta e a disponibilidade de reforçadores, exigindo cautela ao atribuir os efeitos exclusivamente ao esforço. Elsmore (1971, Experimento 2) observou resultados semelhantes ao expor três pombos a um esquema múltiplo de razão fixa (FR FR) com diferentes probabilidades de reforço (0,25 e 0,50). O valor de FR foi aumentado de 1 para 64 para dois pombos e de 1 para 32 para o outro sujeito, mantendo-se cada valor em vigor por 10 sessões. À medida que o FR aumentava, a taxa de resposta diminuía, efeito mais pronunciado no componente com a menor probabilidade de reforço.

A relação negativa entre esforço e taxa de resposta também foi observada em respostas de fuga. Winograd (1965, Experimento 1), por exemplo, expôs ratos a choques elétricos dos quais podiam escapar pressionando uma barra sob esquemas de reforço de FR. O valor da razão foi aumentado gradualmente de FR 1 para FR 20, mantendo-se constante a intensidade do choque. À medida que o requisito de razão aumentou, observaram-se aumentos na latência da primeira resposta de fuga e reduções na taxa global de respostas, sobretudo nos valores mais altos de FR, embora não segundo uma função linear, como em Powell (1968).

Manipulações análogas foram posteriormente estendidas a humanos. Weiner (1966) expôs participantes a um esquema múltiplo de reforço FR 10 FR 40, no qual 100 pontos serviam como reforçadores e os componentes se alternavam após cada entrega de reforço. Em uma fase subsequente, foi introduzido um botão de mudança: pressioná-lo alternava os componentes a qualquer momento. Maiores taxas de resposta ao botão de mudança ocorreram nos componentes com valores de FR mais altos, sugerindo que os participantes preferiam condições de menor esforço em relação a condições de maior esforço. Em conjunto, esses resultados indicam que, quando o esforço de resposta é manipulado por meio da variação do número de respostas exigidas para produzir reforçadores, (1) taxas de resposta mais baixas tendem a ocorrer sob valores de FR elevados; (2) respostas de fuga podem diminuir quando valores de FR mais

altos são necessários para escapar; e (3) respostas de fuga que produzem acesso a condições de menor esforço podem ser fortalecidas.

Outra forma de examinar o esforço de resposta é manipular a força necessária para emitir a resposta. Esse tipo de manipulação é comum em dois grupos de estudos: aqueles que investigam os efeitos da força sobre a taxa de resposta e aqueles que examinam os efeitos da força sobre a resistência comportamental. Alling e Poling (1995, Experimento 1), por exemplo, expuseram ratos a um esquema múltiplo em que, em um componente, a exigência de força para pressionar a barra era constante (0,25 N, aproximadamente 25 g), enquanto, no outro, a força exigida variava entre 25, 50, 100 e 200 g. À medida que a exigência de força aumentava no componente de força variada, as taxas de resposta diminuíam, sem alterações sistemáticas no componente de força constante, indicando que o aumento do esforço físico exigido pode reduzir o responder independentemente de mudanças na programação de reforço.

Chung (1965, Experimento 3) observou resultados semelhantes ao expor pombos a um esquema múltiplo de intervalo variável (VI) 60 s VI 180 s, em que a força necessária para bicar o disco variava entre 150, 200, 250 e 300 g, mantida idêntica entre componentes. À medida que a força aumentava, as taxas de resposta diminuíam, com efeitos mais pronunciados no componente VI 180 s, em que a taxa de reforço era mais baixa, corroborando evidências de que o impacto do esforço de resposta pode ser modulado pela densidade de reforcamento.

Efeitos semelhantes foram observados em humanos. Miller (1968), por exemplo, expôs participantes a uma situação em que reforçadores eram produzidos ao responder em duas alavancas. Uma alavanca exigia aproximadamente 9 kg de força (alta força) para ser acionada, enquanto a outra exigia cerca de 450 g (baixa força). Quando os reforçadores eram programados para a alavanca de 9 kg, uma resposta vocal produzia, por um período de 60 s, a oportunidade de mudar da alavanca de alta força para a alavanca de baixa força. Observou-se aumento na frequência das respostas vocais, sugerindo que a mudança de uma condição com maior exigência de esforço físico para outra com menor esforço pode manter o comportamento que produz tal mudança. Esses achados corroboram os resultados de Weiner (1966, Experimento 1), nos quais o esforço de resposta foi manipulado por meio de diferentes valores de FR, indicando sistematicamente preferência por condições de menor esforço.

Os efeitos de diferentes exigências de força também foram examinados em estudos sobre resistência comportamental. Capehart et al. (1958), por exemplo, expuseram ratos a três exigências de força para pressionar a barra (5, 40 e 70 g) sob um esquema de reforço FR 1. Após o treinamento de aquisição, os os animais foram distribuídos em três grupos (G1, G2 e G3) e expostos à extinção sob apenas um valor de força: 5 g para G1, 40 g para G2 e 70 g para G3. Observou-se maior resistência à extinção em G1, seguida de G2 e, por último, G3, sugerindo uma relação negativa entre exigência de força e resistência comportamental. Resultados convergentes foram relatados por por Mowrer e Jones (1943), Skinner e Morse (1958) e Johnson e Viney (1970), reforçando a conclusão de que aumentos no esforço físico requerido tendem a reduzir não apenas a taxa de resposta, mas também a sua persistência na ausência de reforço.

Em humanos, efeitos análogos das exigências de força sobre a resistência comportamental foram observados por Luiz et al. (2020). Durante a linha de base, participantes foram expostos a um esquema múltiplo de reforço VI 45 s VI 45 s, em que a força necessária para pressionar um botão de mola era de 1 Kg no componente de baixo esforço e de 5 kg no componente de alto esforço. Na fase de teste, o responder foi perturbado por um arranjo de extinção múltipla (EXT EXT), combinado ou não com uma tarefa concorrente de anagramas. Observou-se taxas de resposta mais baixas no componente de alta força e menor resistência comportamental no componente de alta força, sugerindo que respostas mantidas sob menores exigências de esforço físico tendem a persistir mais frente a operações disruptivas. Em um estudo subsequente, Luiz et al. (2021) replicaram e estenderam esse procedimento para a resistência à extinção, encontrando novamente maior persistência no componente de baixo esforço, o que fortalece a evidência de uma relação negativa entre exigência de força e resistência comportamental em humanos. Em conjunto, esses resultados sugerem que, quando o esforço de resposta é manipulado por meio da variação da força necessária para responder, (1) taxas de resposta mais baixas tendem a ocorrer sob maiores exigências de força e (2) exigências de baixa força produzem maior resistência comportamental. Além disso, convergências entre estudos com animais não humanos e com humanos indicam que diferentes procedimentos de manipulação de esforço de resposta (e.g., variação da FR ou da força exigida) produzem padrões semelhantes de sensibilidade do comportamento às variações no custo da resposta. Outra forma, menos frequente, de investigar os efeitos do esforço de resposta consiste em manipular a distância a ser percorrida em respostas de salto. Solomon (1948), por exemplo, treinou ratos a saltar entre plataformas. Para alguns animais, a distância a ser saltada variava entre o e 20 cm (baixo esforço), enquanto, para outros, variava entre o e 40 cm (alto esforço). Os reforçadores eram entregues sob um esquema FR 1. Em uma condição de teste, os ratos foram expostos à extinção. Os resultados indicaram que distâncias maiores estavam associadas a taxas de resposta menores e a menor resistência à extinção no grupo de alto esforço, o que é consistente com a função supressiva do aumento de custo físico observada em outras dimensões de esforço de resposta.

Os estudos anteriores indicam, de forma relativamente consistente, que níveis mais altos de esforço de resposta tendem a produzir taxas de resposta mais baixas e, em muitos casos, menor resistência comportamental (Elsmore & Brownstein, 1968; Friman & Poling, 1995; Soares et al., 2017). Esses efeitos foram obtidos manipulando distintas dimensões do comportamento, como o número de respostas necessárias para produzir reforçadores, as exigências de força de resposta e a distância em tarefas de salto. A relação negativa entre responder e esforço de resposta sugere que o esforço funciona, em muitos casos, como uma variável com efeitos supressivos sobre o comportamento do organismo, embora a magnitude desses efeitos possa depender de variáveis adicionais, tais como a densidade de reforçamento e a história de aprendizagem.

Apesar de essas diferentes manipulações capturarem aspetos importantes do esforço de resposta, elas não esgotam as possíveis dimensões pelas quais o esforço pode ser estudado. Uma alternativa conceptual relevante consiste em manipular a velocidade como dimensão de esforço, por exemplo, alterando a rapidez exigida para que respostas sejam efetivas em uma tarefa. No entanto, até onde se sabe, nenhum

estudo examinou sistematicamente os efeitos da velocidade como esforço de resposta sobre o comportamento humano, especialmente em contextos simulados que modelam situações de tomada de decisão com implicações para segurança, saúde ou sustentabilidade.

Assim, o presente experimento teve como objetivo principal investigar os efeitos de diferentes níveis de velocidade de um alvo móvel sobre a taxa de respostas de participantes humanos em uma tarefa computadorizada de "destruição de fontes de poluição". Além disso, buscou-se examinar como o responder variava entre os níveis mais baixo e mais alto de velocidade, por meio de medidas proporcionais calculadas ao longo das sessões. Para esse objetivo secundário, utilizou-se um esquema múltiplo de reforço de dois componentes, com diferentes taxas de reforço entre componentes, o que permite comparações diretas com estudos anteriores que manipularam outras dimensões de esforço de resposta, como Chung (1965, Experimento 3) e Elsmore (1971, Experimento 2).

Esperava-se que aumentos na velocidade do alvo fossem acompanhados por reduções sistemáticas na taxa de respostas, em linha com achados prévios envolvendo outras dimensões de esforço de resposta.

Método

Participantes, Local e Equipamentos

Seis estudantes de graduação, com idades entre 19 e 39 anos, sem histórico prévio de participação em pesquisas experimentais em laboratório, participaram do estudo. O número de seis participantes é consistente com delineamentos experimentais de sujeito único, que tipicamente empregam pequenos conjuntos de casos e enfatizam replicações intra- e entre participantes para sustentar a validade interna e a generalização analítica dos achados (Kazdin, 2011; Kratochwill et al., 2010).

Todos foram recrutados por meio de um convite online, no qual se informava que participariam de um estudo sobre comportamento humano e que realizariam uma única sessão de aproximadamente 80 minutos em laboratório. A participação foi voluntária e nenhuma compensação financeira foi oferecida durante ou após o experimento. Antes do início da sessão, todos os participantes leram e assinaram o termo de consentimento livre e esclarecido. Ao final do experimento, o experimentador forneceu esclarecimentos adicionais sobre os objetivos do estudo. Todos os procedimentos foram conduzidos em conformidade com as diretrizes éticas vigentes e aprovados pelo comitê de ética em pesquisa da instituição (CAAE: 54151821.8.3001.0020).

O experimento foi conduzido em dias úteis, em uma sala de aproximadamente 10 m² equipada com uma mesa e duas cadeiras. Um *notebook* com monitor de 15,6 polegadas (39,6 cm) e mouse com fio foram utilizados de forma padronizada para todos os participantes. O *software* ProgRef V6.1.2 foi utilizado para programar, executar e registrar automaticamente as sessões experimentais.

6

Procedimento

No início do experimento, os participantes leram e assinaram um termo de consentimento informado que descrevia a duração da participação, os procedimentos gerais e o direito de interromper a participação e a qualquer momento, sem qualquer penalidade. Em seguida, foram solicitados a deixar todos os materiais pessoais, como relógios e telefones celulares, na cadeira disponível no lado oposto da mesa em que se sentaram e a ler as instruções que a seguir se descrevem.

"BEM-VINDO AO: SOBREVIVENTE DE PRECISÃO

Nosso planeta está prestes a ser destruído pela poluição causada pelas indústrias DEV1L-Corp.

Neste momento, a Terra tem apenas 100 dias até ser completamente destruída.

A população mundial escolheu você como o agente mais preciso que existe para atacar os barcos que estão poluindo nossa água. Seu objetivo é seguir o movimento dos barcos e destruí-los.

Para fazer isso, você deve clicar com o botão esquerdo do *mouse* no símbolo: 🕸

Cada vez que você conseguir destruir um barco, você dará à Terra mais 100 dias de sobrevivência.

Enquanto isso, as Indústrias DEV1L-Corp têm aumentado a velocidade dos barcos.

Então, use toda a sua habilidade para ser preciso em seus ataques.

Para iniciar, clique em INICIAR."

A tarefa experimental consistia em pressionar o botão esquerdo do *mouse* mantendo o cursor sobre um botão de resposta apresentado na tela do computador. Esse botão de resposta era representado por um retângulo que mudava de cor em função do componente do esquema múltiplo de reforço ao qual os participantes estavam expostos (ver descrição da linha de base). O botão media aproximadamente 3,48 cm de comprimento por 2,93 cm de altura na tela de 15,6 polegadas utilizada em todas as sessões, garantindo padronização entre participantes. No interior do retângulo, havia um símbolo em ASCII exibido em preto em todos os componentes. O botão de resposta deslocava-se continuamente pela tela ao longo das sessões, exigindo que os participantes acompanhassem seu movimento para emitir respostas eficazes.

Imediatamente após uma resposta atender à contingência de reforço, 100 dias eram adicionados ao contador de dias localizado no centro da tela. Todos os cliques no botão de resposta eram acompanhados por *feedback* visual (o botão "piscava"). A cor do contador de dias variava de acordo com a cor do botão de resposta, e havia um contador separado para cada componente do esquema múltiplo. Ambos os contadores eram reiniciados em zero no início de cada sessão. Ao final de cada sessão, o número total de dias obtidos em cada componente e a soma dos dias eram exibidos na tela do computador, juntamente com a seguinte mensagem: "A missão acabou! Acima está o número de dias que a Terra tem! Chame o experimentador!".

Delineamento e Condições Experimentais

Cada participante (Pi) completou cinco sessões consecutivas, correspondentes, respectivamente, à Linha de Base 1, Variação de Velocidade 1, Variação de Velocidade 2, Variação de Velocidade 3 e Linha de Base 2, caracterizando um delineamento A–B–A de sujeito único.

Linha de Base 1. Os participantes foram expostos, em um delineamento de sujeito único A–B–A, a um esquema múltiplo de reforço VI 15 s VI 30 s. Os intervalos do componente VI 15 s foram 7, 28, 10, 3, 45, 16, 22, 4, 5 e 10 s, nessa ordem. Os intervalos do componente VI 30 s foram 14, 58, 19, 6, 89, 33, 43, 3, 10 e 25 s, nessa ordem. Cada componente teve duração de três minutos, separados por um intervalo entre componentes de 30 segundos, durante o qual toda a tela permanecia preta, com a mensagem "Procurando novos pontos de poluição" exibida em vermelho no centro. Cada sessão incluiu duas apresentações de cada componente. O botão de resposta movia-se pela tela do computador a uma velocidade de 20% do comprimento da tela/segundo (doravante denominado 20%/s). Os participantes tinham de acompanhar esse movimento para clicar sobre o botão.

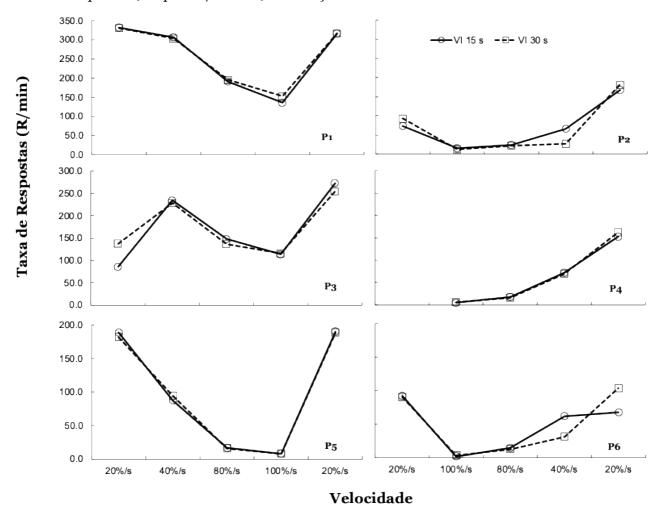
Variação de Velocidade 1. As contingências de reforço foram idênticas às da Linha de Base 1, mas a velocidade de movimento do botão de resposta na tela do computador foi aumentada para 40%/segundo para P1, P3 e P5. Para P2, P4 e P6, a velocidade foi de 100%/segundo.

Variação de Velocidade 2. Todas as demais características do procedimento permaneceram idênticas às da Variação de Velocidade 1, mas a velocidade de movimento do botão de resposta na tela do computador foi aumentada para 80%/ segundo para P1, P3 e P5. Para P2, P4 e P6, a velocidade diminuiu para 80%/ segundo.

Variação de Velocidade 3. Mantiveram-se as mesmas contingências de reforço das fases anteriores, mas a velocidade de movimento do botão de resposta na tela do computador foi aumentada para 100%/segundo para P1, P3 e P5. Para P2, P4 e P6, a velocidade diminuiu para 40%/segundo.

Linha de Base 2. Na fase final (Linha de base 2), todos os participantes foram novamente expostos às mesmas condições programadas na Linha de base 1 (esquema múltiplo VI 15 s VI 30 s, velocidade de 20%/s), permitindo avaliar a reversão dos efeitos da manipulação de velocidade.

Análise de Dados


A unidade de análise foi a taxa de resposta, calculada como o número de respostas por minuto em cada componente (VI 15 s, VI 30 s) e sessão. A taxa de reforços também foi calculada como reforços por minuto em cada componente e sessão, permitindo verificar se as contingências programadas foram efetivamente mantidas ao longo das fases. Devido a uma falha de registo, os dados da Linha de Base 1 de um participante não foram armazenados e foram excluídos da análise gráfica dessa fase.

Os dados foram analisados por meio de inspeção visual de gráficos de séries temporais, focalizando alterações em nível, tendência e variabilidade entre as fases de linha de base e Variação de velocidade, bem como entre os componentes do esquema múltiplo. A análise gráfica foi utilizada para avaliar, em cada participante, a relação funcional entre os diferentes requisitos de velocidade (variável independente) e as mudanças na taxa de resposta (variável dependente) em um delineamento A–B–A de sujeito único, em conformidade com recomendações metodológicas para estudos experimentais com pequeno número de participantes (Kazdin, 2011; Kratochwill et al., 2010). As conclusões foram baseadas exclusivamente em análise visual de dados de sujeito único, em consonância com o uso tradicional da inspeção visual como método primário para avaliar efeitos em delineamentos de caso único (Gage & Lewis, 2013).

Resultados

A Figura 1 mostra a taxa de resposta (respostas por minuto) nas fases de Linha de Base e Variação de Velocidade em cada componente para cada participante. A Tabela 1 apresenta os dados brutos de taxa de resposta e taxa de reforços (eventos por minuto) por sessão. Para todos os participantes, a velocidade do botão de resposta iniciou (Linha de Base 1) e terminou (Linha de Base 2) em 20%/segundo. Para P1, P3 e P5, a velocidade aumentou fase a fase entre as fases intermédias (20%/s, 40%/s, 80%/s, 100%/s), enquanto para P2, P4 e P6 a sequência de velocidades foi inversa (20%/s, 100%/s, 80%/s, 40%/s, 20%/s).

Figura 1Taxa de Respostas (Respostas/Minuto) e Variações de Velocidade

Nota. VI = intervalo variável. P = Participante. Dados da Linha de Base 1 não disponíveis para o Participante 4 devido a falha de registo.

Tabela 1Taxas de Resposta e de Reforços (unidades/minuto) por Sessão e Variação de Velocidade

Participante	Sessão	Velocidade (%/s)	Taxa de Resposta		Taxa de Reforços	
			VI 15 s	VI 30 s	VI 15 s	VI 30 s
P1						
	1	20	332,3	330,7	4,0	1,8
	2	40	307,2	303,2	4,0	1,8
	3	80	191,0	195,8	4,0	1,8
	4	100	135,8	152,5	4,0	1,8
	5	20	316,5	316,7	4,0	1,8
P2						
	1	20	73,5	93,2	1,8	1,8
	2	100	15,5	12,7	2,8	1,3
	3	80	24,3	21,8	3,3	1,8
	4	40	66,3	27,2	2,0	0,7
	5	20	167,3	181,3	4,0	1,8
Р3						
	1	20	85,7	137,5	3,7	1,8
	2	40	234,5	228,5	4,0	1,8
	3	80	148,2	137,0	4,0	1,8
	4	100	114,0	115,5	4,0	1,8
	5	20	272,8	254,3	4,0	1,8
P4						
	1	20	_	_	_	_
	2	100	4,8	6,2	1,8	1,5
	3	80	17,5	15,8	2,8	1,7
	4	40	71,8	69,0	3,7	1,8
	5	20	152,5	162,5	4,0	1,8
P5						
	1	20	188,8	181,8	4,0	1,8
	2	40	87,5	94,2	3,7	1,8
	3	80	16,7	15,8	3,0	1,8
	4	100	8,0	8,0	2,3	1,5
	5	20	190,3	188,3	4,0	1,8
P6						
	1	20	92,3	90,7	3,8	1,8
	2	100	2,0	3,8	1,0	1,0
	3	80	14,8	12,8	2,5	1,8
	4	40	62,2	31,3	3,7	1,8
	5	20	67,8	104,0	3,5	1,8

Nota. VI = intervalo variável. P = Participante.

Para o P1, observou-se uma diminuição clara da taxa de resposta em ambos os componentes à medida que a velocidade aumentou de $20 \rightarrow 40 \rightarrow 80 \rightarrow 100\%/\text{segundo}$, seguida de recuperação para níveis próximos dos iniciais quando a velocidade regressou a 20%/segundo na Linha de Base 2.

Um padrão qualitativamente semelhante foi observado para o P5, embora com decréscimos mais acentuados nas velocidades mais elevadas.

Para P3, a taxa de resposta aumentou inicialmente quando a velocidade passou de 20%/segundo para 40%/segundo, padrão compatível com um possível efeito de treino na primeira sessão de Linha de Base; nas sessões subsequentes, verificou-se uma diminuição da taxa de resposta à medida que a velocidade aumentou para 80%/segundo e 100%/segundo, seguida de novo aumento durante a Linha de Base 2 (20%/s).

Os P2, P4, P6, expostos à sequência inversa de velocidades, apresentaram o padrão oposto: à medida que a velocidade diminuiu de 100%/segundo para 40%/segundo nas fases de Variação de velocidade, observaram-se aumentos sistemáticos na taxa de resposta, com um aumento adicional quando a velocidade retornou a 20%/segundo na Linha de base 2. Conforme descrito em Método, a ausência de registro da Linha de base 1 para P4 impossibilitou a comparação direta com a fase inicial; ainda assim, o padrão de aumento da taxa de resposta ao longo da redução de velocidade foi semelhante ao observado em P2 e P6. Considerando apenas as medidas de taxa de resposta, não se identificou um padrão consistente de diferenças sistemáticas entre os componentes VI 15 s e VI 30 s, sugerindo que, neste estudo, a manipulação da velocidade do alvo teve um impacto mais saliente sobre o responder do que as diferenças programadas na taxa de reforço entre componentes.

Discussão

O presente estudo teve como principal objetivo examinar se a velocidade de um alvo móvel pode funcionar como uma dimensão de esforço de resposta em uma tarefa computadorizada, afetando sistematicamente a taxa de resposta em humanos. Em termos gerais, observou-se uma relação negativa entre velocidade e taxa de resposta: aumentos nos requisitos de velocidade foram acompanhados, na maioria dos participantes, por reduções nas taxas de resposta, ao passo que reduções de velocidade foram acompanhadas por aumentos nas taxas, embora com alguma variação individual e sem que a função assumisse um formato estritamente linear. Esses resultados são consistentes com evidências prévias que documentam efeitos supressivos de diferentes manipulações de esforço de resposta em organismos não humanos e humanos (Chung, 1965, Experimento 3; Luiz et al., 2020, 2021; Weiner, 1966), sugerindo que a velocidade pode ser conceptualizada como mais uma dimensão relevante de esforço na Análise do Comportamento.

Os resultados do presente estudo indicam, portanto, que a relação entre velocidade, enquanto dimensão de esforço de resposta, e taxa de resposta não segue uma função linear simples, mas confirma a tendência geral observada em estudos que manipulam outras dimensões de esforço (Chung, 1965; Luiz et al., 2020, 2021; Weiner, 1966). Uma análise mais detalhada da Figura 1 evidencia padrões adicionais que contribuem para a compreensão de como a manipulação da velocidade influencia o comportamento ao longo do tempo e entre participantes.

Em primeiro lugar, observa-se uma assimetria no padrão de redução e recuperação das taxas de resposta. Os participantes expostos a aumentos progressivos de velocidade (P1, P3, P5) apresentaram reduções graduais da taxa de resposta, ao passo que aqueles expostos a reduções progressivas de velocidade (P2, P4, P6) mostraram aumentos marcados das taxas de resposta quando a velocidade retornou a 20%/segundo na segunda linha de base, especialmente em P2 e P4. Esse padrão sugere um possível *custo*

cumulativo do esforço quando a exigência de velocidade aumenta e um efeito de recuperação relativamente rápida quando a exigência é reduzida. Essa assimetria pode ser discutida em diálogo com a perspectiva da resistência à mudança, tal como formulada na teoria do momentum comportamental (Nevin & Grace, 2000), na qual operações disruptivas tendem a reduzir a persistência do comportamento, especialmente quando este não é mantido por taxas particularmente elevadas de reforço. À luz desse enquadramento, aumentos na exigência de velocidade podem ser entendidos como manipulações que tornam a resposta mais custosa e potencialmente fragilizam a sua resistência à mudança.

Outro aspeto relevante é que, apesar da diferença na taxa de reforço programada entre os componentes VI 15 s e VI 30 s, a Figura 1 não indica um efeito sistemático dessa variável sobre a taxa de resposta. Em condições típicas, esquemas de reforço mais densos (e.g., VI 15 s) tendem a manter taxas de resposta mais elevadas; contudo, neste estudo, a manipulação da velocidade parece ter exercido um impacto mais saliente do que a diferença programada na taxa de reforço, uma vez que não se observou um padrão consistente de diferenciação entre os componentes. Esse achado é convergente com estudos que investigam a interação entre esforço e reforço, sugerindo que aumentos no custo da resposta podem suprimir o comportamento mesmo quando os reforçadores são disponibilizados em taxas relativamente altas (Pinkston & Libman, 2017).

Para além desses efeitos gerais, observaram-se diferenças individuais na sensibilidade ao esforço. Participantes como P2 e P6 apresentaram quebras abruptas na taxa de resposta quando expostos à velocidade de 100%/segundo, ao passo que outros participantes evidenciaram reduções mais graduais ao longo das variações de velocidade. Essas variações interindividuais podem refletir diferenças na tolerância ao esforço, na história de reforçamento sob diferentes custos de resposta ou em variáveis motivacionais não controladas (e. e., fadiga, envolvimento na tarefa), sugerindo que estudos futuros deverão considerar de forma sistemática variáveis de história e de contexto ao investigar a sensibilidade ao esforço.

Em conjunto, os resultados obtidos reforçam a ideia de que a velocidade pode ser uma variável relevante para a modulação do comportamento e sugerem que, tal como outras manipulações de esforço, pode ser utilizada para reduzir respostas indesejáveis ou promover respostas desejáveis sem recurso direto a procedimentos punitivos. Essa possibilidade é particularmente pertinente em contextos aplicados (e. g., clínicos, educacionais, organizacionais), nos quais o aumento ou a diminuição do esforço necessário para executar determinadas respostas pode ser manipulado de forma relativamente simples, integrando-se em programas de intervenção comportamental que privilegiam estratégias alternativas à punição.

Esses resultados articulam-se com esforços recentes para identificar alternativas às contingências de punição no controle de comportamentos problemáticos (Critchfield & Rasmussen, 2010). Em muitos contextos, os profissionais precisam reduzir respostas indesejáveis, mas procedimentos punitivos são frequentemente desaconselhados devido aos seus contra-efeitos e a preocupações éticas (Fontes & Shahan, 2021; Sidman, 2000).

A expansão do conhecimento sobre contingências de esforço de resposta constitui, assim, uma via promissora. Em conjunto com estudos que manipularam o número de respostas necessárias, as exigências de força de resposta ou a distância física a percorrer, os resultados do presente estudo sugerem

que exigências de velocidade podem produzir um padrão similar: quanto maior o esforço de resposta, menor tende a ser a taxa de resposta. Por outro lado, quando o objetivo é aumentar a ocorrência de comportamento apropriado e as contingências de reforço não podem ser alteradas, a redução do esforço necessário para responder pode favorecer o aumento da taxa de resposta.

Apesar da convergência com múltiplos experimentos, a relação negativa entre esforço e taxa de resposta tem sido questionada. Pinkston e Libman (2017) argumentaram que tal relação pode, em parte, refletir um artefato decorrente de alterações na definição operacional de resposta. Em um estudo em que usaram exigências de força como medida de esforço, definiram uma *banda* de força na qual apenas respostas que atingiam um determinado limiar produziam reforçadores, embora todas as respostas emitidas fossem registradas. Quando apenas as respostas que cumpriam o critério eram incluídas no cálculo da taxa, observou-se a função típica: a taxa diminuía à medida que a exigência de força aumentava. Quando, porém, todas as respostas acima e abaixo do limiar eram consideradas, aumentos na força puderam estar associados a aumentos da taxa global de resposta (Pinkston & Foss, 2018). Com base nessa análise, estudos de esforço de resposta, como o presente estudo, que restringem a definição de *resposta eficaz* às respostas que produzem reforço podem ser criticados por alterarem a definição de resposta à medida que o esforço aumenta.

Embora a posição de Pinkston e Libman (2017) represente um desafio importante para a interpretação molecular dos estudos de esforço de resposta, algumas considerações conceituais são necessárias. Em primeiro lugar, importa clarificar como se define um operante. Se o comportamento é definido pela relação de dependência entre estímulos antecedentes, resposta e consequências, então apenas as respostas que entram nessa relação devem ser consideradas parte do operante. No caso clássico de pressão à barra, o comportamento sob análise não é qualquer contacto com a barra, mas a resposta que fecha o circuito e que, em determinadas condições de reforço, produz comida em um contexto específico. Além disso, muitos estudos de esforço de resposta — tal como grande parte da investigação em Análise Experimental do Comportamento — incluem fases de extinção, nas quais o reforço deixa de ser apresentado. Nesses casos, o operante não deixa de existir; continua a ser definido historicamente pela relação estabelecida entre estímulos antecedentes, resposta e consequências, mantendo a sua função por generalização de estímulos e história de reforçamento (Skinner, 1953/1991). Assim, a ausência temporária de reforço não implica que o comportamento deixe de ser um operante, mas antes que a sua probabilidade de ocorrência é modulada por alterações na contingência.

Aplicando esses argumentos ao presente estudo, o comportamento sob análise não incluía todos os movimentos do *mouse* ou cliques emitidos pelos participantes, mas um padrão específico de resposta: deslocar o cursor e clicar sobre o botão em movimento a uma velocidade suficiente para que o clique ocorresse quando o botão estivesse sob o cursor, produzindo, potencialmente, reforço dependendo do esquema VI em vigor. Foi esse operante *eficaz* que diminuiu à medida que a velocidade aumentou.

Do ponto de vista aplicado, a crítica de Pinkston e Libman (2017) pode ser menos relevante. Se, por exemplo, em uma intervenção voltada a reduzir um comportamento autolesivo numa criança (e.g., esfregar constantemente os olhos), o aumento do esforço físico (e.g., pesos nos braços) produzir uma diminuição clinicamente significativa da resposta-alvo, o objetivo da intervenção terá sido alcançado, ainda que outras

respostas motoras associadas possam ter aumentado. Nessa perspectiva, os resultados obtidos no presente estudo, bem como o padrão largamente observado em pesquisas sobre esforço de resposta, continuam a constituir um efeito empírico robusto e útil para a formulação de intervenções comportamentais.

Limitações

Apesar de os resultados fornecerem evidência consistente sobre os efeitos da velocidade enquanto dimensão de esforço de resposta, algumas limitações devem ser reconhecidas. Em primeiro lugar, a amostra foi reduzida e composta exclusivamente por estudantes universitários, num contexto laboratorial e numa tarefa de simulação computadorizada. Esta combinação de características limita a generalização dos achados para outros grupos etários, contextos aplicados e tipos de resposta.

Em segundo lugar, cada participante completou apenas cinco sessões, o que restringe a análise da estabilidade a longo prazo dos efeitos da velocidade e impede examinar de forma mais fina possíveis efeitos cumulativos de prática ou fadiga.

Em terceiro lugar, a operacionalização do esforço centrou-se numa tarefa visuomotora específica, em que a resposta consistia em seguir e clicar um alvo em movimento. Não é claro em que medida padrões semelhantes surgiriam em outras classes de resposta (por exemplo, respostas verbais, tarefas de escolha complexa) ou em contextos com exigências ambientais diferentes. Em quarto lugar, não foram recolhidas medidas directas de esforço percebido nem indicadores fisiológicos (por exemplo, frequência cardíaca, actividade electromiográfica), pelo que a inferência de esforço assenta exclusivamente em índices comportamentais de desempenho. A integração futura de medidas subjectivas e fisiológicas poderá clarificar a articulação entre esforço físico, esforço percebido e alterações na taxa de resposta.

Por último, o registo de dados incidiu nas respostas "eficazes", isto é, cliques que ocorriam com o cursor sobre o botão em movimento e, potencialmente, produziam reforço, não incluindo sistematicamente respostas ineficazes (e.g., cliques fora do alvo). Esta característica impede testar directamente, no presente estudo, as críticas de Pinkston e Libman (2017) relativas ao papel da definição de resposta na função esforço—resposta. Além disso, a análise baseou-se exclusivamente na inspeção visual de séries temporais, sem recurso a índices quantitativos complementares de efeito em delineamentos de caso único, o que constitui simultaneamente uma escolha alinhada com a tradição da área e uma limitação metodológica que poderá ser colmatada em trabalhos subsequentes.

Conclusão

O presente estudo expandiu a literatura sobre esforço de resposta ao demonstrar que a velocidade pode ser considerada como uma dimensão relevante do esforço e que sua manipulação influencia a taxa de resposta de maneira semelhante a outras variações tradicionalmente estudadas, como a força física ou o número de respostas necessárias (Alling & Poling, 1995; Powell, 1968). Em termos gerais, o principal achado foi que aumentos na velocidade do alvo foram acompanhados, na maioria dos participantes, por reduções ordenadas na taxa de resposta, corroborando a hipótese de que variações no esforço exercem, em muitos casos, um efeito supressivo sobre o comportamento.

Para além do contributo conceitual, esses resultados têm implicações práticas importantes. A manipulação da velocidade pode constituir uma estratégia alternativa à punição para reduzir comportamentos indesejáveis: ao aumentar o custo motor de uma resposta (e. g., exigindo maior rapidez ou precisão), é possível reduzir sua frequência sem recorrer diretamente a procedimentos aversivos. Inversamente, a redução da velocidade pode ser utilizada para facilitar a emissão de respostas apropriadas, tornando o comportamento-alvo mais acessível ao indivíduo, especialmente quando as contingências de reforço não podem ser substancialmente alteradas.

Os dados sugerem ainda direções promissoras para investigação futura. A combinação sistemática da velocidade com outras dimensões de esforço (e.g., força e número de respostas requeridas) poderá fornecer uma visão mais abrangente de como diferentes variações do custo de resposta interagem entre si. A inclusão de medidas fisiológicas (e.g., frequência cardíaca, eletromiografia) poderá ajudar a distinguir entre esforço percebido e esforço físico efetivo. Finalmente, pesquisas futuras poderão explorar de forma mais direta a relação entre velocidade e resistência à mudança, aprofundando as implicações da manipulação da velocidade no quadro da teoria do *momentum* comportamental.

Em síntese, o presente estudo indica que a velocidade pode ser conceptualizada como uma forma de esforço de resposta e que o seu aumento tende a reduzir, de forma ordenada, a taxa de resposta em humanos em uma tarefa computadorizada. Ao acrescentar essa nova dimensão à literatura sobre esforço de resposta, os achados contribuem para uma compreensão mais refinada de como diferentes formas de custo comportamental modulam o responder e apontam para aplicações potenciais em contextos clínicos, educacionais e organizacionais que procuram estratégias eficazes e eticamente aceitáveis para alterar o comportamento.

Agradecimentos e Autoria

Agradecimentos: Os autores não indicaram quaisquer agradecimentos.

Conflito de interesse: Os autores não indicaram quaisquer conflitos de interesse.

Fontes de financiamento: Não se aplica.

Contributos: ACML: Conceptualização; Metodologia; Análise Formal; Investigação; Recursos; Redação – Rascunho Original; Redação – Revisão e Edição. MMAT: Conceptualização; Recursos; Redação – Rascunho Original; Redação – Revisão e Edição. JMSN: Metodologia. JRS: Rascunho Original; Redação – Revisão e Edição. KKML: Redação – Revisão e Edição. LHAL: Análise Formal; Investigação; Recursos; Redação – Rascunho Original; Redação – Revisão e Edição. RTT: Recursos.

Referências

Alling, K., & Poling, A. (1995). The effects of differing response-force requirements on fixed-ratio responding of rats. *Journal of the Experimental Analysis of Behavior*, 63(3), 331–346. https://doi.org/c4b5pq

Brothers, K. J., Krantz, P. J., & McClannahan, L. E. (1994). Office paper recycling: A function of container proximity. *Journal of Applied Behavior Analysis*, 27(1), Artigo 1297784. https://doi.org/b9bm26

Capehart, J., Viney, W., & Hulicka, I. M. (1958). The effect of effort upon extinction. *Journal of Comparative and Physiological Psychology*, *51*(4), 505–507. https://doi.org/fh69kp

Chung, S.-H. (1965). Effects of effort on response rate. *Journal of the Experimental Analysis of Behavior*, 8(1), 1–8. https://doi.org/bw2d8h

Critchfield, T. S., & Rasmussen, E. R. (2010). It's aversive to have an incomplete science of behavior. *Revista Mexicana de Análisis de La Conducta*, 33(0). https://doi.org/c9h3pq

- Elsmore, T. F. (1971). Effects of response effort on discrimination performance. *The Psychological Record*, *21*(1), 17–24. https://doi.org/m83k
- Elsmore, T. F., & Brownstein, A. J. (1968). Effort and response rate. Psychonomic Science, 313-314. https://doi.org/m83m
- Fontes, R. M., & Shahan, T. A. (2021). Punishment and its putative fallout: A reappraisal. *Journal of the Experimental Analysis of Behavior*, 115(1), 185–203. https://doi.org/gr7h3x
- Friman, P. C., Finney, J. W., Rapoff, M. A., & Christophersen, E. R. (1985). Improving pediatric appointment keeping with reminders and reduced response requirement. *Journal of Applied Behavior Analysis*, 18(4), 315–321. https://doi.org/fsk4kw
- Friman, P. C., Glasscock, S. G., Finney, J. W., & Christophersen, E. R. (1987). Reducing effort with reminders and a parking pass to improve appointment keeping for patients of pediatric residents. *Medical Care*, 25(1), 83–86. https://doi.org/cxprf3
- Friman, P. C., & Poling, A. (1995). Making life easier with effort: Basic findings and applied research on response effort. *Journal of Applied Behavior Analysis*, 28, 583–590. https://doi.org/dnv4qd
- Gage, N. A., & Lewis, T. J. (2013). Analysis of effect for single-case design research. *Journal of Applied Sport Psychology*, 25(1), 46–60. https://doi.org/qf87
- Gwinn, M. M., Derby, K. M., Fisher, W., Kurtz, P., Fahs, A., Augustine, M., & McLaughlin, T. F. (2005). Effects of increased response effort and reinforcer delay on choice and aberrant behavior. *Behavior Modification*, 29(4), 642–652. https://doi.org/cx3xvh
- Irvin, D. S., Thompson, T. J., Turner, W. D., & Williams, D. E. (1998). Utilizing increased response effort to reduce chronic hand mouthing. *Journal of Applied Behavior Analysis*, *31*(3), 375–385. https://doi.org/c2svgw
- Johnson, N., & Viney, W. (1970). Resistance to extinction as a function of effort. *Journal of Comparative and Physiological Psychology*, 71(1), 171–174. https://doi.org/c4r5qt
- Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings (2.ª ed.). Oxford University Press.
- Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., & Shadish, W. R. (2010). *Single-case designs technical documentation*. What Works Clearinghouse, Institute of Education Sciences, U.S. Department of Education. https://bit.ly/49NSd2R
- Luiz, A., Costa, C. E., dos Santos, J. R., & Tsutsumi, M. M. A. (2020). Resistance to change as function of different physical-effort requirements in humans. *Behavioural Processes*, 176, Artigo 104123. https://doi.org/kzs4
- Luiz, A., Costa, C. E., Banaco, R. A., & Tsutsumi, M. M. A. (2021). Effects of different physical-effort requirements on resistance to extinction in humans. *European Journal of Behavior Analysis*, 23(1), 1–12. https://doi.org/gj98q5
- Miller, L. K. (1968). Escape from an effortful situation. *Journal of the Experimental Analysis of Behavior*, 11(5), 619–627. https://doi.org/d3dbhk
- Mowrer, O. H., & Jones, H. M. (1943). Extinction and behavior variability as functions of effortfulness of task. *Journal of Experimental Psychology*, *33*(5), 369–386. https://doi.org/fmv6fh
- Nevin, J. A., & Grace, R. C. (2000). Behavioral momentum and the law of effect. *Behavioral and Brain Sciences*, 23(1), 73–90. https://doi.org/b7dmks
- Pinkston, J. W., & Foss, E. K. (2018). The role of response force on the persistence and structure of behavior during extinction. *Journal of the Experimental Analysis of Behavior*, 109(1), 194–209. https://doi.org/10.1002/jeab.306
- Pinkston, J. W., & Libman, B. M. (2017). Aversive functions of response effort: Fact or artifact? *Journal of the Experimental Analysis of Behavior*, 108(1), 73–96. https://doi.org/gbn6jn
- Powell, R. W. (1968). The effect of small sequential changes in fixed-ratio size upon the post-reinforcement pause. *Journal of the Experimental Analysis of Behavior*, 11(5), 589–593. https://doi.org/ccv86b
- Sidman, M. (2000). Coercion and its fallout. Authors Cooperative (Original work published 1989).
- Skinner, B. F. (1991). Science and human behavior. Free Press. (Trabalho original publicado em 1953)
- Skinner, B. F., & Morse, W. H. (1958). Fixed-interval reinforcement of running in a wheel. *Journal of the Experimental Analysis of Behavior*, 1(4), 371–379. https://doi.org/bwf3t8
- Soares, P. G., Costa, C. E., Aló, R. M., Luiz, A., & Cunha, T. R. de L. (2017). Custo da resposta: Como tem sido definido e estudado? *Perspectivas Em Análise Do Comportamento*, 8(2), 258–268. https://doi.org/mp59

- Solomon, R. L. (1948). Effort and extinction rate: A confirmation. *Journal of Comparative and Physiological Psychology*, *41*(2), 93–101. https://doi.org/bk6dzb
- Van Camp, C. M., Vollmer, T. R., & Daniel, D. (2001). A systematic evaluation of stimulus preference, response effort, and stimulus control in the treatment of automatically reinforced self-injury. *Behavior Therapy*, 32(3), 603–613. https://doi.org/fr9293
- Weiner, H. (1966). Preference and switching under ratio contingencies with humans. *Psychological Reports*, *18*(1), 239–246. https://doi.org/bbhvs4
- Wilder, D. A., Ertel, H. M., & Cymbal, D. J. (2021). A review of recent research on the manipulation of response effort in applied behavior analysis. *Behavior Modification*, 45(5), 740–768. https://doi.org/m83n
- Winograd, E. (1965). Escape behavior under different fixed ratios and shock intensities. *Journal of the Experimental Analysis of Behavior*, 8(2), 117–124. https://doi.org/d3jx2j