Análise de agrupamento (Clusters Analysis) em duas etapas no ensino à distância: Uma forma de reduzir as lacunas na literatura científica no ensino à distância

Autores

DOI:

https://doi.org/10.31211/rpics.2021.7.2.230

Palavras-chave:

Curso online, Ensino à distância, Ensino superior, Perseverança, Análise cluster

Resumo

Contexto: Embora as taxas de abandono escolar sejam frequentemente muito elevadas no ensino à distância, tem sido realizada muita investigação para identificar os fatores que influenciam o abandono escolar ou a persistência neste modo de aprendizagem. As conclusões destes estudos nem sempre convergem e salientam que é difícil isolar um único fator explicativo. Embora a maioria dos fatores sejam pessoais e ambientais, há menos investigação sobre a relação entre a conceção e a retenção ou desistência do curso. Método: Este estudo apresenta uma metodologia que envolve uma análise em duas fases de 623 variáveis de 19 cursos universitários de uma instituição de ensino à distância (EAD). Este estudo agrupou os cursos em cinco tipos de cursos com base em 22 variáveis. Resultados: Os resultados indicaram que certas variáveis sociodemográficas se tornam um fator de risco de desistência dos cursos, dependendo da sua distribuição nos cursos padrão. Conclusão: Esta metodologia sublinha a importância da conceção instrucional na equação de retenção e desistência da EAD e ajuda a explicar, em parte, porque é que estudos anteriores não chegaram a um consenso sobre quais as variáveis que devem ser utilizadas para explicar a desistência.

Downloads

Não há dados estatísticos.

Referências

Arifin, M. H. (2018). The role of student support services in enhancing student persistence in the Open University context: Lesson from Indonesia Open University. Turkish Online Journal of Distance Education, 19(3), 156–168.

Baglin, J. (2014). Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR, Practical Assessment, Research, and Evaluation, 19(1), 1–15. https://doi.org/gk58v4

Bakker, E. J., Verhaegh K. J., Kox, J. H., van der Beek, A. J., Boot, C. R., Roelofs, P. D., & Francke, A. L. (2019). Late dropout from nursing education: An interview study of nursing students’ experiences and reasons. Nurse Education in Practice, 39, 17–25. https://doi.org/g4f5

Bennett, R. (2003). Determinants of undergraduate student drop out rates in a university business studies department. Journal of Further and Higher Education, 27(2), 123–141. https://doi.org/br3mjj

Bernard, R. M., Abrami, P. C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., Wallet, P. A., Fiset, M., & Huang, B. (2004). How does distance education compared with classroom instruction? A meta-analysis of the empirical literature. Review of Educational Research, 74(3), 379–439. https://doi.org/d8pd3p

Burns, M. (2013). Staying or leaving? Designing for persistence in an online educator training programme in Indonesia, Open Learning: The Journal of Open, Distance and e-Learning, 28(2), 141–152. https://doi.org/ggx3rg

Cooper, D., & Schindler, P. (2011). Business research methods (11th ed.). McGraw-Hill International Edition.

Dolnicar, S. (2003). Using cluster analysis for market segmentation-typical misconceptions, established methodological weaknesses and some recommendations for improvement. Australia, Faculty of Commerce, University of Wollongong.

Flora, D. B., & Curran, P. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491. https://doi.org/b6vmvn

Flynn, A. B. (2015). Structure and evaluation of flipped chemistry courses: Organic & spectroscopy, large and small, first to third year, English and French. Chemistry Education Research and Practice, 16(2), 198–211. https://doi.org/gjk3h2

Franklin, S., Walker, C., & Statistics Canada. (2010). Survey methods and practices. Ministry of Industry. https://bit.ly/3qZpvWv

Garratt-Reed, D., Roberts, L. D., & Heritage, B. (2016). Grades, student satisfaction and retention in online and face-to-face introductory psychology units: A test of equivalency theory. Frontiers in Psychology, 7(673), 1–10. https://doi.org/f8kxbv

Garrison, D. R. (1987). Researching dropout in distance education. Distance Education, 8(1), 95–101, https://doi.org/fhmc45

Hammond, D. E., & Shoemaker, C. (2014). Are there differences in academic and social integration of College of Agriculture Master’s students in campus based, online and mixed programs? NACTA Journal, 58(3), 180–188. https://bit.ly/32tbDcV

Jun, J. (2005). Understanding dropout of adult learners in e-learning [Doctoral dissertation, University of Georgia]. https://bit.ly/3qVwEqJ

Kember, D., Lai, T., Murphy, D., Siawet, I., & Yuen, K. S. (1992). Student progress in distance education: Identification of explanatory constructs. British Journal of Psychology, 62, 285–298. https://doi.org/bhcn8r

Kember, D., Lai, T., Murphy, D., Siawet, I, & Yuen, K. S. (1994). Student progress in distance education courses: A replication study. Adult Education Quarterly, 45(1), 286–301. https://doi.org/c7srnw

Jézégou, A. (2010). Se former à distance: Regard sur les stratégies d’autorégulation environnementale d’étudiants adultes. Savoirs, 24(1), 79–99. https://doi.org/g63r

Kalet, A., Ellaway, R., Song, H., Nick, M., Sarpel, U., Hopkins, M., Hill, J., Plass, J., & Pusic, M. (2013). Factors influencing medical student attrition and their implications in a large multi-centre randomised education trial. Advances in Health Sciences Education, 18(3), 439–450. https://doi.org/f46zm2

Lee, Y., & Choi, J. (2011). A review of online course dropout research: Implications for practice and future research. Educational Technology Research and Development, 59(5), 593–618, https://doi.org/fws8x7

Leeds, E., Campbell, S., Baker, H., Ali, R., Brawley, D., & Crisp, J. (2013). The impact of student retention strategies: An empirical study. International Journal of Management in Education, 7(1/2), 22–43. https://doi.org/gqvc

Li, Y., Chen, H., & Han, Y. (2010). Why do they drop out of school? Interview survey of learners in open and distance education. Open Education Research, 2, 1–11. https://bit.ly/3cEdvRD

Li, Y., Niu, J., & Ding, X. (2012). A Follow-up study of the dropouts from the English program of open and distance learning (part 2). Open Education Research, 18(6), 80–86. https://bit.ly/3DFT8zq

Marcus, M., & Minc, H. (1988). Introduction to linear algebra. Dover Publications.

Monteiro, S., Lencastre, J. A., Silva, B. D., Osório, A. J., de Waal, P., İlin, S. Ç., & İlin, G. (2017). A systematic review of design factors to prevent attrition and dropout in e-learning courses. In G. İlin, S. C. İlin, B. D. da Silva, A. J. Osório, & J. A. Lencastre (Eds.), Better e-learning for innovation in education (pp. 135-153). Istanbul: ÖzKaracan. http://hdl.handle.net/1822/47770

Nichols, M. (2010). Student perceptions of support services and the influence of targeted interventions on retention in distance education. Distance Education, 31(1), 93–113. https://doi.org/cxbxbr

No, F., & Hirakawa, Y. (2012). Identifying causes of dropout through longitudinal quantitative analysis in rural Cambodian basic schools. Journal of International Development and Cooperation, 19(1), 25–39, http://doi.org/10.15027/33828

Packham, G., Jones, G., Miller, G., & Thomas, B. (2004). E-learning and retention: Key factors influencing student withdrawal. Education and Training, 46(6/7), 335–342. https://doi.org/brq8xr

Pittenger, A., & Doering, A. (2010). Influence of motivational design on completion rates in online self-study pharmacy-content courses. Distance Education, 31(3), 75–293. https://doi.org/dh3x33

Ramsdal, G. H., Bergvik. S., & Wynn, R. (2018). Long-term dropout from school and work and mental health in young adults in Norway: A qualitative interview-based study. Cogent Psychology, 5(1), 1–16, https://doi.org/g4f3

Rekkedal, T. (1985). Introducing the personal tutor/counsellor in the system of distance education. Project Report 1: Experiment Description. ED235774. https://eric.ed.gov/?id=ED235774

Robinia, K. J., Maas, N. A., Johnson, M. M., & Nye, R. M. (2012). Program outcomes following implementation of a hybrid curriculum at the certificate level. Nursing Education Perspectives, 33(6), 374–377. https://bit.ly/3CQQPIP

Sauvé, L., Fortin, A., Landry, F., Viger, C., Côté, S., Bégin, S., & Mupalanga. I. (2014). La persévérance et la réussite universitaires d’étudiants inscrits à des programmes de premier cycle en sciences comptables au Québec. Rapport de recension. Société pour l’Apprentissage à Vie (SAVIE). https://bit.ly/3CE8fs0

Tan, P. N., Steinbachet, M., & Kumar, V. (2013). Data mining cluster analysis: basic concepts and algorithms. In P.-N. Tan, M. Steinbach, A. Karpatne, & V. Kumar (Eds.), Introduction to data mining (pp. 487-533). Pearson Publishing.

Tan, M., & Shao, P. (2015). Prediction of student dropout in e-learning program through the use of machine learning method. International Journal of Emerging Technologies in Learning, 10(1), 11–17. https://doi.org/gmd8x3

Willging, P. A., & Johnson, S. D. (2009). Factors that influence students’ decision to dropout of online courses. Journal of Asynchronous Learning Networks, 13(3), 115–127. https://bit.ly/3oI6HYY

Yasmin, D. (2013). Application of the classification tree model in predicting learner dropout behaviour in open and distance learning, Distance Education, 34(2), 218–231. https://doi.org/gf278z

Publicado

30-11-2021

Como Citar

Desjardins, G., Papi, C., Gérin-Lajoie, S., & Sauvé, L. (2021). Análise de agrupamento (Clusters Analysis) em duas etapas no ensino à distância: Uma forma de reduzir as lacunas na literatura científica no ensino à distância. Revista Portuguesa De Investigação Comportamental E Social, 7(2), 77–88. https://doi.org/10.31211/rpics.2021.7.2.230

Edição

Secção

Artigo Original