Calculating and reporting effect sizes on scientific papers (2): Guide to report the strength of relationships

Authors

  • Helena Espírito Santo Instituto Superior Miguel Torga; Centro de Investigação em Neuropsicologia e Intervenção Cognitiva e Comportamental, Universidade de Coimbra, Portugal https://orcid.org/0000-0003-2625-3754
  • Fernanda Daniel Instituto Superior Miguel Torga; Centro de Estudos e Investigação em Saúde da Universidade de Coimbra, Portugal

DOI:

https://doi.org/10.7342/ismt.rpics.2017.3.1.48

Keywords:

Effect size, Correlation coefficients, Statistical reporting, Statistical interpretation

Abstract

In the first issue of the Portuguese Journal of Behavioral and Social Research, it was described the importance of calculating, indicating and interpreting the effect sizes for the differences between means of two groups. The PJBSR intends to continue to remind of the importance of reporting effect sizes for other statistical tests. The magnitude of the strength of the relationships was not indicated in the previous paper, and it may not be known that correlation is effect size. Thus, this paper intends to provide some guidelines to the authors on the procedures for calculating the Pearson correlation coefficient and some correlation coefficients for special data (Spearman Rho, Kendall’s Tau, Point-biserial, and biserial, Phi, Cramér’s V, and Eta). For this purpose, the formulas, steps in the SPSS (Statistical Package for the Social Sciences), assumptions and precautions, classification of values, and their interpretation will be presented. Since SPSS does not compute all the mentioned coefficients, five spreadsheets (3 ways of comparing correlations, point-biserial and biserial, and correction of correlations for samples < 60) were included in the article supplements.

Downloads

Download data is not yet available.

References

Abrami, P. C., Cholmsky, P., & Gordon, R. (2001). Statistical analysis for the social sciences: An interactive approach. Boston: Allyn and Bacon. [Google Scholar]

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Statistical Methods in Medical Research, 24(4), 462-487. [Google Scholar] [CrossRef]

Beranuy, M., Oberst, U., Carbonell, X., & Chamarro, A. (2009). Problematic Internet and mobile phone use and clinical symptoms in college students: The role of emotional intelligence. Computers in Human Behavior, 25(5), 1182-1187. [Google Scholar] [CrossRef]

Berben, L., Sereika, S. M., & Engberg, S. (2012). Effect size estimation: Methods and examples. International Journal of Nursing Studies, 49(8), 1039-1047. [Google Scholar] [CrossRef]

Bezeau, S., & Graves, R. (2001). Statistical power and effect sizes of clinical neuropsychology research. Journal of Clinical and Experimental Neuropsychology, 23(3), 399-406. [Google Scholar] [CrossRef]

Breaugh, J. A. (2003). Effect size estimation: Factors to consider and mistakes to avoid. Journal of Management, 29(1), 79-97. [Google Scholar] [CrossRef]

Brogden, H. E. (1949). A new coefficient: Application to biserial correlation and to estimation of selective efficiency. Psychometrika, 14(3), 169-182. [Google Scholar] [CrossRef]

Butters, M. A., Young, J. B., Lopez, O., Aizenstein, H. J., Mulsant, B. H., Reynolds, C. F., . . . Becker, J. T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10(3), 345-357. [Google Scholar] [PMC]

Carroll, J. B. (1961). The nature of the data, or how to choose a correlation coefficient. Psychometrika, 26(4), 347-372. [Google Scholar] [CrossRef]

Chiu, S. I., Hong, F. Y., & Chiu, S. L. (2013). An analysis on the correlation and gender difference between college students' internet addiction and mobile phone addiction in Taiwan. ISRN Addiction, 2013, 10-1155. [Google Scholar] [CrossRef]

Cohen, B. H. (2001). Explaining psychological statistics (2nd ed.). New York, NY: Wiley. [Google Scholar]

Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 7(3), 249-253. [Google Scholar] [CrossRef]

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Lawrence Erlbaum Associates. [Google Scholar]

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. [Google Scholar] [CrossRef]

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. [Google Scholar]

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple correlation/regression analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates. [Google Scholar]

Costa, M. D., Espirito-Santo, H., Simões, S. C., Correia, A. R., Almeida, R., Ferreira, L., Conde, Â., . . . Lemos, L. (2013). 1549 - Correlates of elderly loneliness [Abstract]. European Psychiatry, 28(1), 1-6. [Google Scholar] [CrossRef]

Cumming, G. (2012). Understanding the new statistics. New York, NY: Routledge. [Google Scholar]

Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917-928. [Google Scholar] [CrossRef]

Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge: Cambridge University Press. [Google Scholar] [CrossRef]

Enders, W. (2015). Applied econometric time series (4th ed.). Hoboken, NJ: Wiley & Sons, Inc. [Google Scholar]

Espirito-Santo, H., & Daniel, F. B. (2015). Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): As limitações do p < 0,05 na análise de diferenças de médias de dois grupos [Calculating and reporting effect sizes on scientific papers (1): p < 0.05 limitations in the analysis of mean differences of two groups]. Revista Portuguesa de Investigação Comportamental e Social, 1(1), 3-16. [Google Scholar] [CrossRef]

Ezekiel, M. (1929). The application of the theory of error to multiple and curvilinear correlation. Journal of the American Statistical Association, 24(165A), 99-104. [Google Scholar] [CrossRef]

Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532-538. [Google Scholar] [CrossRef]

Fermino, S., Espirito-Santo, H., Matreno, J., Daniel, F., Pena, I., Maia, S., . . . Gaspar, A. (2012). Diferenças sintomáticas, neuropsicológicas e sociodemográficas entre idosos com doença de Alzheimer e idosos com depressão [Symptomatic, neuropsychological, and sociodemographic differences between older people with Alzheimer's disease and older people with depression]. In Asociación Española de Psicología Conductual. (Ed.), Libro de Resúmenes de los Trabajos Aceptados en el V Congreso Internacional Y X Nacional de Psicología Clínica (p. 551). [Google Scholar] [Handle]

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507-521. [Google Scholar] [CrossRef]

Fisher, R. A. (1921). On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 3-32. [Google Scholar] [Handle]

Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329-332. [Google Scholar] [Handle]

Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained attention across the life span in a sample of 10000: Dissociating ability and strategy. Psychological Science, 26(9), 1497-1510. [Google Scholar] [CrossRef]

Glass, G. V., & Hopkins, K. D. (1995). Statistical methods in education and psychology (3rd ed.). Needham Heights, MA: Allyn & Bacon. [Google Scholar]

Goodwin, L. D., & Leech, N. L. (2006). Understanding correlation: Factors that affect the size of r. The Journal of Experimental Education, 74(3), 251-266. [Google Scholar] [CrossRef]

Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111-120. [Google Scholar] [CrossRef]

Gravetter, F. J., & Wallnau, L. B. (2013). Statistics for the behavioral sciences (9th ed.). Belmont, CA: Cengage Learning. [Google Scholar]

Gupta, D. S. (1960). Point biserial correlation coefficient and its generalization. Psychometrika, 25(4), 393-408. [Google Scholar] [CrossRef]

He, Y., Zaslavsky, A. M., Landrum, M. B., Harrington, D. P., & Catalano, P. (2010). Multiple imputation in a large-scale complex survey: A practical guide. Statistical Methods in Medical Research, 19(6), 653-670. [Google Scholar] [CrossRef]

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107-128. [Google Scholar] [CrossRef]

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2002). Applied statistics for the behavioral sciences (5th ed.). Boston: Houghton Mifflin. [Google Scholar]

Horton, N. J., & Kleinman, K. P. (2007). Much ado about nothing. The American Statistician, 61(1), 79-90. [Google Scholar] [CrossRef]

Huff, D. (1993). How to lie with statistics. New York, NY: W. W. Norton & Company. [Google Scholar] [PDF]

IBM. (2013). IBM SPSS modeler 16 algorithms guide. IBM Corporation. [URL]

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93. [Google Scholar] [CrossRef]

Kline, R. B. (2013). Beyond significance testing: Reforming data analysis methods in behavioral research (2nd ed.). Washington, DC: American Psychological Association. [Google Scholar]

Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., . . . Busick, M. D. (2012). Translating the statistical representation of the effects of education interventions into more readily interpretable forms. National Center for Special Education Research, Institute of Education Sciences. [Google Scholar]

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40. [Google Scholar] [CrossRef]

Matthews, R. (2000). Storks deliver babies (p = 0.008. Teaching Statistics, 22(2), 36-38. [Google Scholar] [CrossRef]

Mendonca, J. D., & Holden, R. R. (1996). Are all suicidal ideas closely linked to hopelessness?. Acta Psychiatrica Scandinavica, 93(4), 246-251. [Google Scholar] [CrossRef]

Nakagawa, S., & Freckleton, R. P. (2008). Missing inaction: The dangers of ignoring missing data. Trends in Ecology and Evolution, 23(11), 592-596. [Google Scholar] [CrossRef]

Napoleão, M., Monteiro, B., & Espirito-Santo, H. (2016). Qualidade subjetiva do sono, sintomas depressivos, sentimentos de solidão e institucionalização em pessoas idosas [Subjective sleep quality, depressive symptoms, feelings of loneliness, and institutionalization in elderly people]. Revista Portuguesa de Investigação Comportamental e Social, 2(2), 12-24. [Google Scholar] [CrossRef]

Nelsen, R. B. (2012). Kendall tau metric. In M. Hazewinkel (Ed.), Encyclopedia of mathematics. [Google Scholar] [URL]

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill. [Google Scholar]

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemporary Educational Psychology, 25(3), 241-286. [Google Scholar] [CrossRef]

Pallant, J. (2011). SPSS survival manual: A step by step guide to data analysis using SPSS for Windows (4th ed.). Crows Nest, NSW: Allen and Unwin. [Google Scholar]

Pearson, K. (1904). Report on certain enteric fever inoculation statistics. British Medical Journal, 2(2288), 1243-1246. [Google Scholar] [CrossRef]

Pearson, K. (1905). Mathematical contributions to the theory of evolution XIV: On the general theory of skew correlation and non-linear regression. Draper’s Company Research Memoirs, Biometric Series II. London: Dulau & Co. [Google Scholar] [URL]

Pituch, K. A., & Stevens, J. P. (2015). Applied multivariate statistics for the social sciences (6th ed.). New York, NY: Routledge. [Google Scholar]

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66. [Google Scholar] [CrossRef]

Rosenthal, R. (1991). Meta-analytic procedures for social research (Revised edition). Newbury Park, California: Sage publications. [Google Scholar]

Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52(1), 59-82. [Google Scholar] [CrossRef]

Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of Educational Psychology, 74(2), 166-169. [Google Scholar] [CrossRef]

Rosnow, R. L., & Rosenthal, R. (1996). Computing contrasts, effect sizes, and counternulls on other people's published data: General procedures for research consumers. Psychological Methods, 1(4), 331-340. [Google Scholar] [CrossRef]

Rovine, M. J., & Von Eye, A. (1997). A 14th way to look at a correlation coefficient: Correlation as the proportion of matches. The American Statistician, 51(1), 42-46. [Google Scholar] [CrossRef]

Rubin, D. B. (1996). Multiple imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473-489. [Google Scholar] [CrossRef]

Shieh, G. (2010). Estimation of the simple correlation coefficient. Behavior Research Methods, 42(4), 906-917. [Google Scholar] [CrossRef]

Simões, S., Ferreira, J. J., Braga, S., & Vicente, H. T. (2015). Bullying, vinculação e estilos educativos parentais em adolescentes do 3º ciclo do ensino básico [Bullying, attachment and parental rearing styles in adolescents from the 3rd cycle of basic school]. Revista Portuguesa de Investigação Comportamental e Social, 1(1), 30-41. [Google Scholar] [CrossRef]

Smith, B. B. (1923). Handbook of statistical terms and methods. Bureau of Agricultural Economics. [Google Scholar]

Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected effect size estimates. The Journal of Experimental Education, 61(4), 334-349. [Google Scholar] [CrossRef]

Sprinthall, R. C. (2003). Basic statistical analysis (7th ed.). Boston: Pearson Allyn & Bacon. [Google Scholar]

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245-251. [Google Scholar] [CrossRef]

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson. [Google Scholar]

Templeton, G. F. (2011). A two-step approach for transforming continuous variables to normal: Implications and recommendations for IS research (Vol. 28, pp. 41–58). Paper presented at the Communications of the Association for Information. [Google Scholar] [URL]

Thompson, B. (2006). Research synthesis: Effect sizes. In J. Green, G. Camilli & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 583-603). Washington, DC: Routledge. [Google Scholar]

Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44(5), 423-432. [Google Scholar] [CrossRef]

Vogt, W. P. (1999). Dictionary of statistics and methodology: A nontechnical guide for the social sciences (2nd ed.). Thousand Oaks, CA: Sage. [Google Scholar]

Wang, Z., & Thompson, B. (2007). Is the Pearson r2 biased, and if so, what is the best correction formula?. The Journal of Experimental Education, 75(2), 109-125. [Google Scholar] [CrossRef]

Published

2017-02-28

How to Cite

Espírito Santo, H., & Daniel, F. (2017). Calculating and reporting effect sizes on scientific papers (2): Guide to report the strength of relationships. Portuguese Journal of Behavioral and Social Research, 3(1), 53–64. https://doi.org/10.7342/ismt.rpics.2017.3.1.48

Issue

Section

Review Paper