Calcular e apresentar tamanhos do efeito em trabalhos científicos (3): Guia para reportar os tamanhos do efeito para análises de regressão e ANOVAs

  • Helena Maria Amaral Espirito Santo Centro de Investigação Interdisciplinar Psicossocial, Instituto Superior Miguel Torga; Centro de Investigação do Núcleo de Estudos e Intervenção Cognitivo-Comportamental Universidade de Coimbra, Portugal http://orcid.org/0000-0003-2625-3754
  • Fernanda Daniel Centro de Investigação Interdisciplinar Psicossocial, Instituto Superior Miguel Torga, Coimbra, Portugal http://orcid.org/0000-0002-2202-1123
Palavras-chave: ANOVA, Análise de regressão, Tamanho do efeito, Valor p

Resumo

No primeiro número da Revista Portuguesa de Investigação Comportamental e Social foi revista a importância de calcular, indicar e interpretar os tamanhos do efeito para as diferenças de médias de dois grupos (família d dos tamanhos do efeito). Os tamanhos do efeito são uma métrica comum que permite comparar os resultados das análises estatísticas de diferentes estudos, informando sobre o impacto de um fator na variável em estudo e sobre a associação entre variáveis. Depois de rever os tamanhos do efeito para as diferenças de médias entre dois grupos (Espirito-Santo e Daniel, 2015) e a maior parte da família r (Espirito-Santo e Daniel, 2017), faltava rever os tamanhos do efeito para a análise da variância. A análise da variância pode ser compreendida como uma extensão da família d a mais de dois grupos (ANOVA) ou como uma subfamília r em que a proporção da variabilidade é imputável a um ou mais fatores. Na subfamília r revista neste estudo, analisa-se a mudança na variável dependente que decorre de uma ou mais variáveis independentes. Esta análise debruça-se sobre os modelos lineares gerais, onde se incluem os modelos de regressão e a ANOVA. Este artigo fornece as fórmulas para calcular os tamanhos do efeito mais comuns, revendo os conceitos básicos sobre as estatísticas e facultando exemplos ilustrativos computados no Statistical Package for the Social Sciences (SPSS). As orientações para a interpretação dos tamanhos do efeito são também apresentadas, assim como as cautelas no seu uso. Adicionalmente, o artigo acompanha-se de uma folha de cálculo em Excel para facilitar e agilizar os cálculos aos interessados.

Downloads

Não há dados estatísticos.

Biografias Autor

Helena Maria Amaral Espirito Santo, Centro de Investigação Interdisciplinar Psicossocial, Instituto Superior Miguel Torga; Centro de Investigação do Núcleo de Estudos e Intervenção Cognitivo-Comportamental Universidade de Coimbra, Portugal
Professora Auxiliar, Instituto Superior Miguel Torga; Coordenadora, Departamento de Investigação & Desenvolvimento do ISMT; co-editora chefe da RPICS  
Fernanda Daniel, Centro de Investigação Interdisciplinar Psicossocial, Instituto Superior Miguel Torga, Coimbra, Portugal

Professora auxiliar Instituto Superior Miguel Torga

Referências

American Psychological Association. (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: American Psychological Association. [Google Scholar]

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379-384. [Google Scholar]

Berben, L., Sereika, S. M., & Engberg, S. (2012). Effect size estimation: methods and examples. International Journal of Nursing Studies, 49(8), 1039-1047. [Google Scholar] [CrossRef]

Bewick, V., Cheek, L., & Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care, 7(6), 451-459. [Google Scholar] [CrossRef]

Bezeau, S., & Graves, R. (2001). Statistical power and effect sizes of clinical neuropsychology research. Journal of Clinical and Experimental Neuropsychology (Neuropsychology, Development and Cognition: Section A), 23(3), 399-406. [Google Scholar]

Carroll, R. M., & Nordholm, L. A. (1975). Sampling characteristics of Kelley“s ε2 and Hays” ω2. Educational and Psychological Measurement, 35(3), 541-554. [Google Scholar] [CrossRef]

Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33, 107-112. [Google Scholar] [CrossRef]

Cohen, J. (1992a). A power primer. Psychological Bulletin, 112(1), 155-159. [Google Scholar] [CrossRef]

Cohen, J. (1992b). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101. [Google Scholar] [CrossRef]

Cumming, G. (2012). Understanding the new statistics. New York: Routledge. [Google Scholar]

Ellis, P. D. (2010). The essential guide to effect sizes. Cambridge: Cambridge University Press. [Google Scholar]

Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: An easy way to maximize the accuracy and power of your research. The American Psychologist, 63(7), 591-601. [Google Scholar] [CrossRef]

Espirito-Santo, H., & Daniel, F. B. (2015). Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): As limitações do p < 0,05 na análise de diferenças de médias de dois grupos [Calculating and reporting effect sizes on scientific papers (1): p < 0.05 limitations in the analysis of mean differences of two groups]. Revista Portuguesa de Investigação Comportamental e Social, 1(1), 3-16. [Google Scholar] [CrossRef]

Espirito-Santo, H., & Daniel, F. (2017). Calcular e apresentar tamanhos do efeito em trabalhos científicos (2): Guia para reportar a força das relações [Calculating and reporting effect sizes on scientific papers (2): Guide to report the strength of relationships]. Revista Portuguesa de Investigação Comportamental e Social, 3(1), 53-64. [Google Scholar] [CrossRef]

Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532-538. [Google Scholar] [CrossRef]

Field, A. (2005). Effect sizes. [PDF]

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. London: Sage. [Google Scholar]

Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver & Boyd. [Google Scholar]

Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2-18. [Google Scholar] [CrossRef]

Glass, G. V., & Hakstian, A. R. (1969). Measures of association in comparative experiments: Their development and interpretation. American Educational Research Journal, 6(3), 403-414. [Google Scholar] [CrossRef]

Haase, R. F., Waechter, D. M., & Solomon, G. S. (1982). How significant is a significant difference? Average effect size of research in counseling psychology. Journal of Counseling Psychology, 29(1), 58-65. [Google Scholar] [CrossRef]

Hair, J., Black, B., Babin, B., & Anderson, R. (2009). Multivariate data analysis (7th ed.). Upper Saddle River: Pearson Higher Ed. [Google Scholar]

Hays, W. L. (1963). Statistics for psychologists. New York: Holt, Rinehart and Winston. [Google Scholar]

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107-128. [Google Scholar] [CrossRef]

Herzberg, P. A. (1969). The parameters of cross-validation. Richmond, VA: William Byrd Press. [Google Scholar]

Ialongo, C. (2016). Understanding the effect size and its measures. Biochemia Medica, 26(2), 150-163. [Google Scholar] [CrossRef]

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20(8), 1-24. [Google Scholar] [CrossRef]

Kelley, T. L. (1935). An unbiased correlation ratio measure. Proceedings of the National Academy of Sciences of the United States of America, 21(9), 554-559. [Google Scholar] [PMC]

Kennedy, J. J. (1970). The eta coefficient in complex ANOVA designs. Educational and Psychological Measurement, 30(4), 885-889. [Google Scholar] [CrossRef]

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.). New Jersey: Pearson. [Google Scholar]

Keren, G., & Lewis, C. (1969). Partial omega squared for ANOVA designs. Educational and Psychological Measurement, 39(1), 119-128. [Google Scholar] [CrossRef]

Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. Canadian Psychological Review/Psychologie Canadienne, 16(1), 44-48. [Google Scholar] [CrossRef]

Keselman, H. J., Algina, J., Lix, L. M., Wilcox, R. R., & Deering, K. N. (2008). A generally robust approach for testing hypotheses and setting confidence intervals for effect sizes. Psychological Methods, 13(2), 110-129. [Google Scholar] [CrossRef]

Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56(5), 746-759. [Google Scholar] [CrossRef]

Kline, R. B. (2013). Beyond significance testing: Reforming data analysis methods in behavioral research (2nd ed.). Washington, DC: American Psychological Association. [Google Scholar]

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 1-12. [Google Scholar] [CrossRef]

Lenhard, W., & Lenhard, A. (2016). Calculation of effect sizes. [Google Scholar] [CrossRef]

Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication research. Human Communication Research, 28(4), 612-625. [Google Scholar] [CrossRef]

Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., . . . Busick, M. D. (2012). Translating the statistical representation of the effects of education interventions into more readily interpretable forms. National Center for Special Education Research, Institute of Education Sciences. [Google Scholar] [URL]

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. New York: Sage Publications, Inc. [Google Scholar]

Lyons, L. C., & Morris, W. A. (2018). The meta analysis calculator. [Google Scholar] [URL]

Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way anova. Behaviormetrika, 40(2), 129-147. [Google Scholar] [CrossRef]

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemporary Educational Psychology, 25(3), 241-286. [Google Scholar] [CrossRef]

Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8(4), 434-447. [Google Scholar] [CrossRef]

Pallant, J. (2011). SPSS: Survival manual (4th ed.). Crows Nest, NSW: Allen & Unwin. [Google Scholar]

Pampel, F. C. (2000). Logistic regression: A primer. Thousand Oaks: SAGE Publications. [Google Scholar]

Pearson, K. (1905). Mathematical contributions to the theory of evolution. XIV. On the general theory of skew correlation and non-linear regression. London: Dulau. [Google Scholar]

Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary note on reporting eta-squared values from multifactor ANOVA designs. Educational and Psychological Measurement, 64(6), 916-924. [Google Scholar] [CrossRef]

Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. [Google Scholar] [CrossRef]

Roberts, J. K., & Henson, R. K. (2002). Correction for bias in estimating effect sizes. Educational and Psychological Measurement, 62(2), 241-253. [Google Scholar] [CrossRef]

Rosenthal, R. (1991). Meta-analytic procedures for social research (Revised). Newbury Park: Sage. [Google Scholar]

Rosenthal, R. (1994). Science and ethics in conducting, analyzing, and reporting psychological research. Psychological Science, 5(3), 127-134. [Google Scholar] [CrossRef]

Rosnow, R. L., & Rosenthal, R. (1989). Statistical procedures and the justification of knowledge in psychological science. The American Psychologist, 44(10), 1276-1284. [Google Scholar] [CrossRef]

Rosnow, R. L., Rosenthal, R., & Rubin, D. B. (2000). Contrasts and correlations in effect-size estimation. Psychological Science, 11(6), 446-453. [Google Scholar] [CrossRef]

Sechrest, L., & Yeaton, W. H. (2016). Magnitudes of experimental effects in social science research. Evaluation Review, 6(5), 579-600. [Google Scholar] [CrossRef]

Smithson, M. (2003). Confidence intervals. Thousand Oaks, CA: Sage. [Google Scholar]

Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected effect size estimates. The Journal of Experimental Education, 61(4), 334-349. [Google Scholar] [JSTOR]

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9(2), 164-182. [Google Scholar]

Steiger, J. H., & Fouladi, R. T. (2016). Noncentrality interval estimation and the evaluation of statistical models. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 197-229). Routledge: Routledge. [Google Scholar]

Stevens, J. P. (2007). Intermediate statistics (3rd ed.). New York: Lawrence Erlbaum Associates. [Google Scholar]

Steyn, H. S. Jr., & Ellis, S. M. (2009). Estimating an effect size in one-way multivariate analysis of variance (MANOVA). Multivariate Behavioral Research, 44(1), 106-129. [Google Scholar] [CrossRef]

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson Education. [Google Scholar]

Thompson, B. (2002). "Statistical,” “practical,” and “clinical”: How many kinds of significance do counselors need to consider?. Journal of Counseling & Development, 80(1), 64-71. [Google Scholar] [CrossRef]

Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44(5), 423-432. [Google Scholar] [CrossRef]

Vacha-Haase, T., & Thompson, B. (2004). How to estimate and interpret various effect sizes. Journal of Counseling Psychology, 51(4), 473-481. [Google Scholar] [CrossRef]

Vaughan, G. M., & Corballis, M. C. (1969). Beyond tests of significance: Estimating strength of effects in selected ANOVA designs. Psychological Bulletin, 72(3), 204-213. [Google Scholar] [CrossRef]

Wherry, R. J. (1931). A new formula for predicting the shrinkage of the coefficient of multiple correlation. The Annals of Mathematical Statistics, 2(4), 440-457. [Google Scholar] [CrossRef]

Wilkinson, L., & Task Force on Statistical Inference., (1999). Statistical methods in psychology journals: Guidelines and explanations. The American Psychologist, 54(8), 594-604. [Google Scholar]

Wilson, D. B. (2010). Meta-analysis stuff. [Google Scholar] [URL]

Wilson, D. B. (2018). Practical meta-analysis effect size calculator. [Google Scholar] [URL]

Zhang, G., & Algina, J. (2011). A robust Root Mean Square Standardized Effect Size in one-way fixed-effects ANOVA. Journal of Modern Applied Statistical Methods, 10(1), 77-96. [Google Scholar] [CrossRef]

Publicado
2018-02-28
Como Citar
Espirito Santo, H. M. A., & Daniel, F. (2018). Calcular e apresentar tamanhos do efeito em trabalhos científicos (3): Guia para reportar os tamanhos do efeito para análises de regressão e ANOVAs. Revista Portuguesa De Investigação Comportamental E Social, 4(1), 43-60. https://doi.org/10.31211/rpics.2018.4.1.72
Secção
Artigo de Revisão